

ENGIE SOLUTIONS

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 5. Investigations sur les sols (A200)

Tableau 6 : Investigations et analyses réalisées sur les sols

			Investigations						Analyses	
Milieux reconnus	Prestations /méthode	Localisation et objectifs	Sondages	Qté	Prof. (ml)	Total I	Mesures in situ	HCT C5-C40, BTEX, COHV, Naphtalène, cyanures sur brut	Pack ISDI conformément à Cyanures libres l'arrêté du et totaux sur 12/12/2014 + COHV brut et sur éluat + 12 métaux	Cyanures libres et totaux sur brut et sur éluat
		Délimiation BGP1	BGP10 et BGP11	2	1	2	PID		2	2
<u>.</u> C	Sondages au	Fosse de déchargement	BGP18	1	4	4	PID		3	3
<u>8</u>	carottier sous gaine	Délimitation BGP7	BGP12 à BGP15	4	1	4	PID		5	5
		Délimitation de BGP9	BGP16, BGP17 et BGP19	3	1	3	PID		3	3
			TOTAL Sols	10		13			13	13
Gaz des sols	Piézairs	Au droit des zones les plus impactées dans les		3	1.5	4.5	PID	3		
		sos	du soi sur le site PzR1 à PzR4	1	4	4	PID	1		
			TOTAL Gaz du sol	4		8.5		4	0	0

HCT = indice hydrocarbures totaux

BTEX = Benzène, Toluène, Ethylbenzène, Xylènes (5 composés)

HAP = hydrocarbures aromatiques polycycliques (16 composés)

12 métaux = antimoine, arsenic, baryum, cadmium, chrome, cuivre, molybdène, nickel, plomb, sélénium, zinc, mercure

Pack ISDI conformément à l'arrêté du 12/12/2014 incluant :

sur sol brut: matière sèche, hydrocarbures C10-C40, hydrocarbures aromatiques polycycliques (HAP), hydrocarbures aromatiques monocycliques (BTEX), а)

polychlorobiphényles (PCB), carbone organique total (COT), test de lixiviation EN 12457-2 (L/S = 10, 1x 24h) sur éluat : métaux et métalloides (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Zn), chlorures, fluorures, sulfates, indice phénol, carbone organique total (COT), fraction (q

COHV = composés organo-halogénés volatils (13)

Les propriétés chimiques des polluants recherchés, les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé figurent en Annexe 1 et en Annexe 2.

5.2 Observations et mesures de terrain

Les terrains recoupés en sondage ont été décrits avant échantillonnage :

- Succession lithologique;
- Présence ou non de niveaux jugés suspects (traces de souillures, caractéristiques organoleptiques anormales (odeur, couleur, texture), présence de matériaux de type déchets, mâchefers, verre, bois...);
- Présence ou non de composés organiques volatils dans les gaz des sols (évaluée au niveau de chaque échantillon prélevé au moyen d'un détecteur à photo-ionisation (PID) régulièrement calibré).

Les échantillons ont ensuite été sélectionnés pour analyses chimiques en laboratoire (cf. § 5.3).

5.2.1 Succession lithologique

Au regard des observations réalisées au cours des investigations, la succession des formations géologiques au droit du site est la suivante, de la surface vers la profondeur :

- Des remblais de schistes rouges entre 0 et 0,4 m de profondeur ;
- Des remblais limono-sableux, avec la présence de nombreux morceaux de briques et cailloutis, entre 0,4 et 1 à 2 m de profondeur selon les zones ;
- Des limons argileux sur une épaisseur d'environ 1 m;
- La craie blanche à partir de 2 à 3 m de profondeur.

Aucune venue d'eau n'a été observée au moment de la réalisation des sondages.

5.2.2 Niveaux suspects et mesures PID

Les caractéristiques des niveaux suspects et les résultats des tests de terrain positifs (mesures PID) sont reportés dans le Tableau 7. L'intégralité des observations figure dans les fiches d'échantillonnage de sols rassemblées en Annexe 3.

Tableau 7 : Niveaux suspects et résultats des mesures de terrain

Sondage	Profondeur	Lithologie	Indices de pollution	Mesure de terrain
BGP10	0,05 – 0,4 m	Remblais de schistes rouges	-	2,4 ppmV
BGP17	0,05 – 0,4 m	Remblais de schistes rouges	-	1,4 ppmV
BGP16	0,05 – 0,4 m	Remblais de schistes rouges	-	1,2 ppmV
BGP16	0,4 – 1 m	Remblais de limons crayeux + divers cailloux	-	2,5 ppmV
PzR1	1-1,5 m	Remblais de limons crayeux + divers cailloux	-	3,8 ppmV

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 25/79

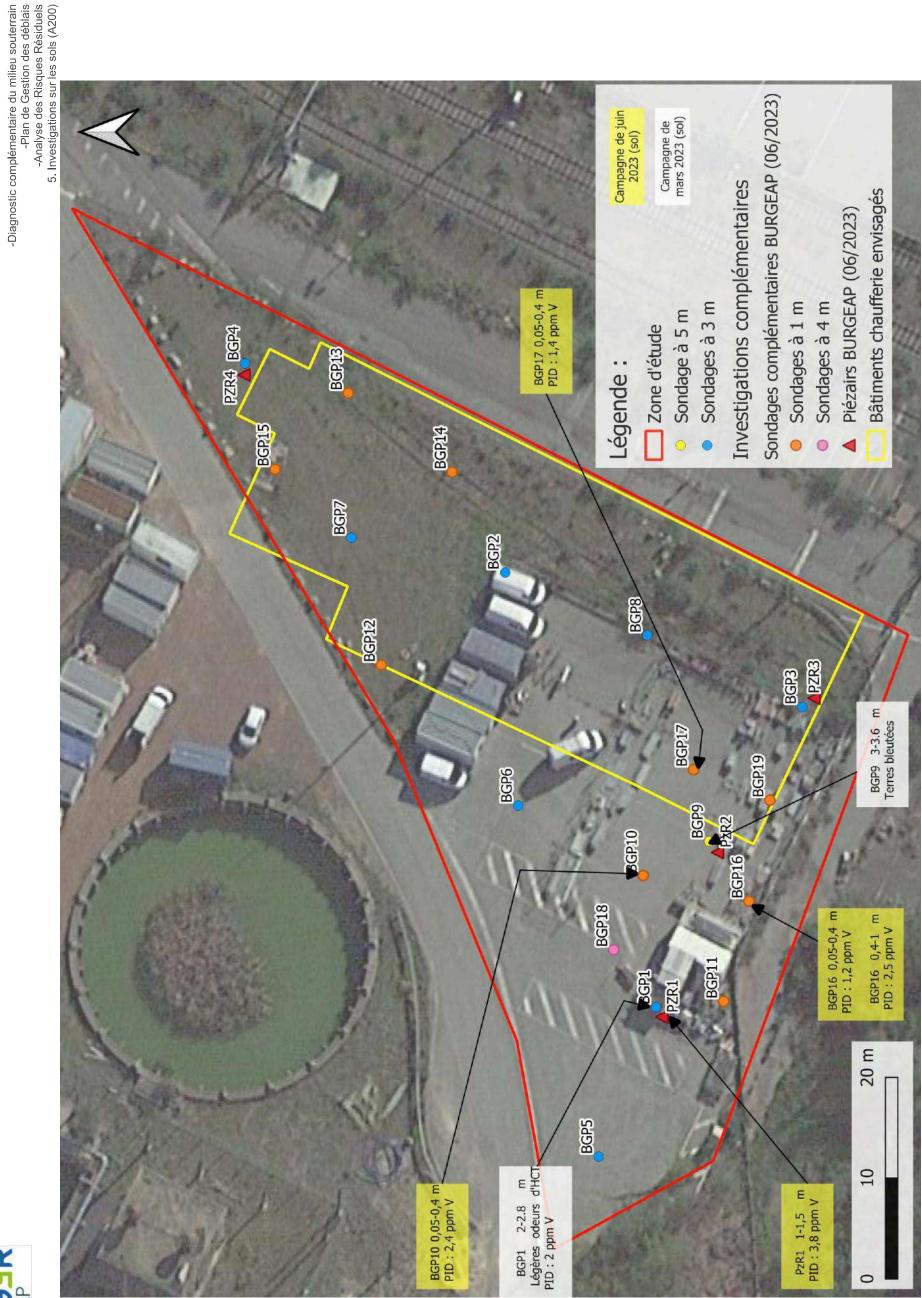


Figure 9 : Localisation des investigations, mesures de terrain et indices de pollution relevés (GINGER BURGEAP, juin 2023)

5.3 Stratégie et mode opératoire d'échantillonnage

Après le levé de la coupe du sondage, le collaborateur de GINGER BURGEAP a procédé au prélèvement des échantillons de sols les plus représentatifs selon le protocole détaillé ci-après :

- Un échantillon pour chaque horizon lithologique homogène ;
- Un échantillon par mètre, si l'épaisseur de l'horizon dépasse 1 m;
- Un échantillon de chaque niveau lithologique suspect.

Une fois prélevés, les échantillons ont été conditionnés dans des bocaux d'une contenance de 375 ml.

Les échantillons soumis à analyses en laboratoire ont été choisis en fonction des observations de terrain ou du projet d'aménagement.

5.4 Conservation des échantillons

Après description, conditionnement et étiquetage, les échantillons de sol ont été stockés en glacière jusqu'à leur arrivée au laboratoire ou au réfrigérateur dans les locaux de GINGER BURGEAP.

5.5 Valeurs de référence pour les sols

Conformément à la méthodologie en vigueur, les concentrations dans les sols au droit de la zone d'étude ont été comparées en premier lieu à des concentrations caractéristiques de bruit de fond régionaux ou propre à certains contextes (urbain).

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux de présentation des résultats d'analyse.

	La gamme de concentrations qui sera utilisée pour comparaison est celle mise en évidence dans les sols naturels ordinaires (sans anomalie géochimique) dans le référentiel pédogéochimiques du Nord-Pas-de-Calais (RPG 2007, percentile 95). A défaut, nous utiliserons également les valeurs proposées par l'ATSDR (Agency for Toxic Substances and Disease Registry).
	Pour le plomb, le Haut Conseil de Santé Publique (HCSP) mentionne une valeur de 300mg (Pb)/kg sol, comme étant une valeur seuil entraînant un dépistage du saturnisme infantile. Un seuil de vigilance a également été établi à 100 mg/kg de plomb dans les sols. Ces valeurs sont des valeurs de gestion mais ne constituent pas la valeur du bruit de fond.
НАР	En l'absence de données locales, les valeurs de référence qui seront utilisées sont issues de celles établies par l'ATSDR (Toxicological profile for PAHs, 1995 et 2005) et de celles des fiches toxicologiques de l'INERIS pour des sols urbains.
Autres composés	Pour les autres composés, en l'absence de valeurs caractérisant le bruit de fond, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.
	Les concentrations sur le sol brut et sur l'éluât ont été comparées aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux déchets inertes. Concernant spécifiquement les cyanures, il n'existe pas de valeurs réglementaires pour l'acceptation en décharges. Toutefois, la FNADE (Fédération Nationale des Activités de Dépollution et de l'Environnement) défini une charte qualité du métier stockage des déchets. Cette charte définit des critères génériques d'acceptation de terres en décharges de déchets inertes, déchets non dangereux et dangereux sur la base d'analyses sur brut et après lixiviation notamment sur les cyanures. Nous utiliserons les concentrations retenues de cette charte pour les cyanures. Toutefois, il est à rappeler que la décision de l'acceptation d'un déchet revient dans tous les cas aux exploitant des décharges.

Réf : NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 27/79

5.6 Résultats et interprétation des analyses sur les sols

Les résultats d'analyse sont synthétisés dans les Tableau 8 et Tableau 9.

Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en Annexe 4.

Les résultats d'analyses sur les sols confirment les résultats des investigations de la campagne de mars 2023 :

• Impacts en HAP (dont le naphtalène), hydrocarbures C₁₀-C₄₀ et cyanures quasiment généralisés sur l'ensemble de la zone d'étude dans les remblais superficiels à l'exception de l'horizon schisteux rouge (entre la surface et 0,4 m de profondeur au droit des sondages BGP10, BGP11 et BGP17) lorsqu'il a été recoupé où les concentrations mesurées dans les sols sont inférieures aux seuils définissant les déchets inertes (arrêté du 12/12/2014).

Il est à noter toutefois un impact en hydrocarbures et HAP au droit de BGP dans les remblais schisteux;

Toutefois, les concentrations maximales mesurées lors des investigations de juin 2023 sont du même ordre de grandeur que celles mesurées en mars 2023 pour les HAP (2 343 mg/kg, dont 37 mg/kg de naphtalène), les hydrocarbures C₁₀-C₄₀ (4 600 mg/kg) et cyanures (550 mg/kg);

- Des dépassements du bruit de fond du Nord-Pas-de-Calais en métaux (antimoine, cuivre, mercure, et ponctuellement en arsenic et chrome), dans les remblais superficiels (0-1 m) essentiellement localisé dans les zones enherbées en friche (sondages BGP2, BGP8, BGP4, BGP7 et BGP12);
- Des traces de BTEX ont été mesurées au droit de BGP12;
- Des impacts très ponctuels en COHV au droit de BGP11 et PzR1. Le composé majoritaire est le 1,2dichloroéthane.

Les résultats d'analyses sur les sols sur éluat mettent en évidence des dépassements des seuils de l'arrêté ministériel du 10/12/2014 définissant les déchets inertes en fluorures, fraction soluble, sulfates et ponctuellement en antimoine sur éluat.

Gestion des déblais hors site

- Une partie des matériaux devant être excavés dans le cadre des travaux de mise en œuvre de la future chaudière biomasse ne pourra pas être considérée comme inerte (au regard de l'arrêté du 12/12/2014);
- En cas d'évacuation hors site des matériaux excavés, sur la base des critères d'acceptation des filières de traitement et de leurs caractéristiques physico-chimiques, les filières d'élimination identifiées envisageables sont les suivantes :

⊠ ISDI	⊠ ISDI+	oxtimes isdnd	⊠ Biocentre	⊠ ISDD	
--------	---------	---------------	-------------	--------	--

La cartographie des principales anomalies de concentrations dans les sols est présentée en Figure 10.

Réf : NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 28/79

Page 29/79

Bgp290/25

Tableau 8 : Résultats d'analyses sur les sols sur brut

	The control of the					Cam	Campagne								Campagne Juin 2023								
### 1						Loca	0,000	40m) BCB 40	aya (muu	(mu)	000	1 1 1 1 1 1	(#00		tur projet d'aménagem	020 47 (0.05.0.40	18 /4 00 2 00m)	BCB 18 (3 00 4 00m)	PCP 49 (0 40 4 00m)	0-01/100150	(woo	(4 00 4 50m)	0 4 (4 00 4 50m)
		The state of the				Profonde	0.	0.	i i i		0.0	(11100		00-1	1.00	0.05-0.40	1.00-2.00	3.00-4.00	0.40-1.00	1.00-1.50	,	00-1.50	1.00-1.50
						Valeur PID (ppmV) 2.4 ppm.	nV <1ppr	۱۱۷ < 1 ppm /	/ <1 ppm V	< 1 ppm V	< 1 ppm V	<pre>< 1 ppm V</pre>	< 1 ppm V	2.5 ppm V	1.4 ppm V	< 1 ppmV	< 1 ppm V	< 1 ppm V	3.8 ppm V	< 1 ppm V	< 1 ppm V	< 1 ppm V
						TIT														Remblais de limon			
2 10 10 10 10 10 10 10 1				Bruit de fond (1)	Valeurs limite des ISDI		Remblais de rouge	chiste Remblais	Remblais de roug							Remblais de roug			de schiste uge				emblais de limon ec divers cailloux
				- %			88.8			85.2	78.7	81.8	78.3	82.7	81.2	89.4	72.7	82.3	83.6	82.3	82.5	82.6	78.1
			2) mark	ŵ M.S.	30 000		14 000		0	26 000	92 000	62 000	64 000	33 000	54 000	12 000	13 000	54 000	42 000	,	-	1	,
			may				<0.5			1.1	1.7	1,5	<0.5	1.6	2.3	<0.5	2	2.3	1.6				,
			/Bu	19.5	Résultate de Teste	ab Tests				7.3	19	16	21	9.1	13	8.3	5.9	1.2	2.8				
)Gu	0.88	lixiviation lixiviati	ion lixivia				0.2	0.8	0.3	0.1	0.2	0.5	00,1	0.2	1,0>	<0,1			1	
			ybu .	28.6	seuils définis Décision	n du Décisic				18	120	33	25	33	38	21	18	5.2	3.7			1	
			yBuu YBu	1.29	déchets inertes 19/12/02	il du Const.				0.24	1.18	0.46 <7,0	0.46	0.26	1.1	0.05 <7,0	0.18	<0,05 <1,0	<0,05		1 1	1 1	
			/Bu	39.6	dans l'arrêté du les déche	its non les déc				14	16	12	20	11	12	21	6.2	3.6	6.4		. .		
			/ßw	0.69	t constant	Sign Sign				<7,0	2.4	0,1>	<7,0	<7,0	14	<1,0	<7,0	<1,0	<1,0	<u> </u>		1	
			ĝ				28			38	86	48	26	g	79	78	2	4	14	-	-	1	
			/Buu				<0,20	0,27	0 <0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20	<0,20
					1		<0,40	7 <0,4	7 <0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40	<0,40
					•		<1,0	2,1,0	0,1,0	<1,0	2	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0
							<4,0	<4,0		8.5	29.6	8.2	<4,0	<4,0	41.6	<4,0	8.9	<4,0	<4,0	7.2	<4,0	<4,0	<4,0
							24,0			19.5	220	40.6	7.2	23.2	180	<4,0	13.5	<4,0	23	38.8	<4,0	<4,0	23.8
						<u> </u>	7.2			86.5	1200	290	68.3	170	950	6.9	33.6	5.1	490	120	10.8	<2,0	180
							10.6			94.6	1000	370	45.6	180	1000	7.3	70.4	3.4	410	120	10.7	<2,0	180
							8.4			33.8	069	260	69	120	009	7 7 7	98	<2,0	220	85	9.1	<2.0	120
										8.3	120	47.8	58.5	42.9	92.7	5.5	42.4	<2,0	33.7	12.3	2.8	<2,0	23.7
							0			410	4600	1500	380	740	4300	42.1	370	<20,0	1400	550	54.5	<20,0	720
				kg M.S. 0.125			0.056		<0,050	5.5	21.5	7.5	0.18	4	37.3	<0,050	8.8	0.12	0.53	4.7	0.4	<0,050	5.4
			,mg/,	kg M.S.			<0,051		0 <0,050	<0,50	<5,0	0.77	<0,050	4.1	<6,0	<0,050	0.78	0.18	0.79	09'0>	<0,050	<0,050	69.0
			/Bull	Kg M S			<0,050	0.61	<0,050	0.59	16.3	3.3	0.19	2.1	8.9	<0,050	0.54	<0,050	1.2	1.5	0.33	<0,050	2.2
			/bu	kg M.S.			0.2		0.08	13.6	113	16.6	0.54	8.6	128	0.076	4.7	1.2	4.1	12.8	1.5	<0,050	12.3
			/bu	kg M.S.		,	0.091			10.6	159	19.4	0.095	13.7	223	<0,050	1.3	0.49	6.1	12.6	0.64	<0,050	19.1
			you you	KG M.S.		<u>' </u> '	0.19			76.8	268	94.4	0.98	63.1 46.3	415	5.1	6.1	3.8	136	30	2.3	<0.050	64.5 44.4
			y6w	kg M.S.			0.12			19	199	47.1	0.47	34.7	201	0.83	2.8	0.98	74.5	19.3	1.2	<0,050	31.6
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,			/Bul	kg M.S.		1	360.0		<0,050	17.3	183	44.4	0.51	30.8	198	0.58	2.5	0.75	48.2	18.2	- ;	<0,050	28.7
Note 1	No. 10. 1. 1. 1. 1. 1. 1. 1.	1	/Gui	S M S		1	<0.050		<0,050	10	1/3	24.8	0.23	19.1	105	0.43	S 1.4	0.33	40.8	9.5	0.57	<0.050	17.4
	Marie Mari		mg/	kg M.S.			0.12		<0,050	20.4	212	51.6	0.45	39.8	233	0.87	2.9	29:0	87	20.9	1.2	<0,050	34.7
	Mathematical Colored Note	1	/Bull	Ng MS		1	<0,05		<0,050	2.2	25.3	0.1	0.13	4.2	24.4	0.091	0.28	0.068	9 413	3.9	0.16	<0,050	3.5
Marie Mari	1	1	i/bu	kg M.S.	1		990.0		<0,050	16.5	156	42.7	0.33	33.7	165	0.49	2.3	0.47	64.2	16.2	0.95	<0,050	29.2
14 10 10 10 10 10 10 10	MANIAN LOT COLOR CATO <	1	ď	Kg M.S. 25	90 90(no C	1.388		0.241	213.09	2187.5	498.07	6/19	363./	2343.2	/ 42/	44.38	12.328	706.99	221.3	15.42	n.d.	345.26
14 1 1 1 1 1 1 1 1 1	This control	1	/Bu				<0,050	0.00	.0 <0,050	0.31	0.61	<0,050	<0,050	<0,050	0.16	<0,050	<0,050	<0,050	<0,050	0.32	<0,05	<0,05	<0,05
Mathematical Column Colu	1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ugu Juan				<0,050	0 00,00	<0,050	0.079	0.71	<0,050	<0,050	<0,050	0.14	<0,050	<0,050	<0,050	<0,050	<0,05	<0,05	0,05	<0,05
Mathematical 1	40.00 6.00 <t< td=""><td> 1</td><th>ybu ybu</th><td></td><td></td><td> </td><td><0,10</td><td>1,0></td><td>7 <0,10</td><td><0,10</td><td>0.39</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td><td><0,10</td></t<>	1	ybu ybu				<0,10	1,0>	7 <0,10	<0,10	0.39	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
1	1	14 15 15 15 15 15 15 15	/BIU		90	700	<0,05	0.005	050,050	<0,050	0.13	090'0>	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050
	100 100 <td>4.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0.</td> <th>20</th> <td></td> <td>8</td> <td>77</td> <td></td> <td></td> <td>P. C.</td> <td>600.0</td> <td>0.7</td> <td></td> <td>· Pill</td> <td></td> <td>20</td> <td>1011</td> <td>2</td> <td>100</td> <td></td> <td>20.0</td> <td>0</td> <td>0</td> <td>The state of the s</td>	4.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0.	20		8	77			P. C.	600.0	0.7		· Pill		20	1011	2	100		20.0	0	0	The state of the s
1	1	1	55) mg/	kg M.S. 0.125			<0,10	7.00	<0,10	1.4	6.1	5.6	<0,10	0.41	14	<0,10	0.26	<0,10	<0,10	29.0	0.13	<0,10	0.49
Major Majo	Thing but	1964 1 1 1 1 1 1 1 1 1	/bu		-		<0,05	7 <0,02	5 <0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
This bright Column Colum	This column Colum	Thing May Lot Color Co	/Bull		1 1		<0.05	5 <0,0,0	5 <0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0.05	<0,05	<0.05	<0.05	<0,05	<0.05	<0,05	<0,05
This bid This Thi	May No. Column	This column	/bu				<0,028	5 <0,02	.5 <0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025	<0,025
Part	This column Colum	Marie Late	/Bull			1	<0.10	20,11 10000	0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10
May No. 1	May 14 No May	May May	γῶω		-		<0,05	20,02	5 <0,05	<0,05	<0,05	<0,05	<0,05	<0,0>	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Marie Lo	Part	May May	mg/			•	<0,05	5 <0,0;	5 <0,05	<0,05	<0,05	<0,05	<0,05	<0'02	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
This column	Probation Column	1 1 1 1 1 1 1 1 1 1					<0.05	0.56	<0.05	2.5	0.08	<0,05	<0,05	<0,05	<0,05	<0,05	0.34	<0,05	<0,05	9.2	<0,05	<0,05	<0,05
Markey No. 1	Mydydd Machael Lot 10 0	myggMS LO - </td <th></th> <td></td> <td></td> <td> </td> <td><0,05</td> <td>5 <0,02</td> <td>5 <0,05</td> <td><0,05</td> <td><0,05</td> <td><0,05</td> <td><0,05</td> <td><0,0></td> <td><0,05</td> <td><0,05</td> <td><0,05</td> <td><0,05</td> <td><0,05</td> <td><0,05</td> <td><0,05</td> <td><0,05</td> <td><0,05</td>					<0,05	5 <0,02	5 <0,05	<0,05	<0,05	<0,05	<0,05	<0,0>	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Thing Name	Marie Lab La	May May					<0,05	5 <0,0.	5 <0,05	<0,05	<0,05	<0,05	<0,05	<0'0>	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
1	1	1			- 40	100	<0,05	5 <0,0.	50,05	<0,05	<0,05	<0,05	<0,05	>0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
LO	LO - - - - - - - - -	LO	S.		2		2			70.7	00:0	201		Die Control			1 000			10.5			
Li	Liu	1.0 1.0	/Guu		1	1	00'0>	70,00	100,001	<0,001	<0,001	<0,001	<0,001	<0,001	0.005	<0,001	<0,001	<0,001	<0,001		-	1	1
Lange Lang	Lange Lang	Lange Lang	/cm			 	<0.007	7 0.00	<0.001	<0.001	<0.001	\$0,001	0.001	<0.001	<0.001	<0.001	<0.007	<0.001	<0.007				
LQ	LO	LO	/bm		1		(00'0>	1 0.00:	<0,001	<0,001	<0,001	<0,001	0.004	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001			-	
LG LG LG LG LG LG LG LG	La La La La La La La La	12 12 13 13 13 13 13 13	/buu				00'0>	0000	<0,001	<0,001	<0,001	<0,001	0.005	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001				,
LO 1 SO SO Not Motor Not N	LQ 1 SQ nd 0.008 nd	1 50 50 60 60 60 60 60 60	/bu				00,0>	0.00	<0,001	<0,001	<0,001	<0,001	0.004	<0,001	<0,001	<0,001	<0,007	<0,001	<0,001			1 1	
LQ LQ LQ LQ LQ LQ LQ LQ	LQ A County	LQ LQ LQ LQ LQ LQ LQ LQ	/bu		1 50	92	p.u	00.00	9 u.d.	p.u	p u	p.u	0.02	n.d.	0.005	n.d.	n.d.	n.d.	n.d.				
14 25 50 -1 13 15 15 15 15 15 15 1	14 15 15 15 15 15 15 15	10 25 50 47 103 86 86 86 87 401	grace of the state	o Ma			00.02	1000	20000	20.004	×0.004	50.004	7000	CO 004	×00.004	×0.004	>0004	20,004	<0.004				
LQ S	LQ S	LQ S S S S S S S S S	Ď.								in the second						10010						
Ltd	Carroll Carr	1	mg/				<1,0	<7,6	<1,0	0,1>	<1,0	<1,0	<1,0	<1,0	0,1>	<1,0	<1,0	<1,0	<7,0		-	1	
97 87 103 86 86 9 87 87 103 81 9.4	NGMS LQ 27.1 11.1 21.3 8.0 8.6 8.6 9.7 8.7 8.1 9.4 9.4 NGMS LQ -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 11.2 -0.7	NGMS LQ - 97 87 103 86 86 86 96 87 87 8 103 81 94 NGMS LQ - 27.1 11.1 21.3 40.7 40.7 32.4 40.7 12.8 71.2 40.7	/Bu				<1,0	42	<1,0	99	550	150	2	130	310	<1,0	83	55	<7,0	,	-	1	
	LQ - Q1 -	Ng MS LQ - · · 27.1 11.1 21.3 Q,1 Q,1 Q,1 32.4 Q,1 Q,1 12.8 71.2 Q,1 Q,1 Q				•	9.7	8.7		9.8	8.6	8.6	6	8.7	8	10.3	8.1	9.4	6				

ENGIE SOLUTIONS

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 5. Investigations sur les sols (A200)

Tableau 9 : Résultats d'analyses sur les sols sur brut

Particular Par																						
Particularies Particularie					Cam	agne							Сатр	agne Juin 2023								
The control of the					Localis	ation							Futur proje	t d'aménagement								
The continue of the continue					Echan	illon BGP10 (0.05-0.40	m) BGP 10 (0.40-1.00m)	BGP 11 (0.05-0.40m) B	GP 11 (0.40-1.00m) BG	sP 12 (0.00-1.00m) BG	P 13 (0.00-1.00m) BG	_	15 (0.00-1.00m) BG	76 (0.40-1.00m) BGF	9 17 (0.05-0.40m) BGA	P 18 (1.00-2.00m) BGI	18 (3.00-4.00m) BG	19 (0.40-1.00m) PzR	3 1 (1.00-1.50m) PzR	3 (3.50-4.00m) PzR	(1.00-1.50m) PzR	R 4 (1.00-1.50m)
The continue The					Profonder		0.40-1.00	0.05-0.40	0.40-1.00	0.00-1.00	0.00-1.00	0.00-1.00	0.00-1.00	0.40-1.00	0.05-0.40	1.00-2.00	3.00-4.00	0.40-1.00	1.00-1.50		1.00-1.50	1.00-1.50
Part					Valeur PID (p.		< 1 ppm V	< 1 ppm V	< 1 ppm V	< 1 ppm V	< 1 ppm V	< 1 ppm V	< 1 ppm V	2.5 ppm V	1.4 ppm V	< 1 ppm V	< 1 ppm V	< 1 ppm V	3.8 ppm V		< 1 ppm V	< 1 ppm V
Particle				=	ndice organolep																	
Apperature of the control of the co					Lith	logie																
1		Bruit	t de fond Valeurs lim					Remblais de schiste rouge								emblais de limon rayeux + divers cailloux					-	emblais de limon sc divers cailloux
1 1 1 1 1 1 1 1 1 1	NALYSES SUR ELUAT		-																			
1 1 1 1 1 1 1 1 1 1	Paramètres généraux																					
1 1 1 1 1 1 1 1 1 1	Hd	L		ļ ·	'	10	9.3	11.5	8.8	8.4	8.4	9.1	8.6	80	11.4	6.7	9.8	8.7				,
4500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 <t< td=""><td>Conductivité corrigée à 25 °C</td><td>πS/cm</td><td></td><td>•</td><td></td><td></td><td>460</td><td>630</td><td>150</td><td>210</td><td>110</td><td>100</td><td>100</td><td>940</td><td>630</td><td>1400</td><td>230</td><td>70.4</td><td></td><td></td><td></td><td></td></t<>	Conductivité corrigée à 25 °C	πS/cm		•			460	630	150	210	110	100	100	940	630	1400	230	70.4				
1 1 1 2 2 2 2 2 2 2		mg/kg M.S.		10009			3700	3400	<1000	1600	<1000	<1000	<1000	8300	3100	12000	1100	<1000				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		mg/kg M.S.		800			30	<10	37	110	34	16	23	48	<10	46	28	+				
1. 1. 1. 1. 1. 1. 1. 1.		mg/kg M.S.	-	20			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
1		O II office		450			40	۰	40			,	,	42	,	,	43	d				
100 100 100 100 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400	***	mg/kg m.o.		1200	1		2 2	2	2 .	2 07	*	- 3	= -	2	* 5	± 0	27	b (
1	(4)	mg/kg M.S.		15000	1		723	JA 7	4	150	2 2	150	. 0	4300	33	J. J	3.1	7 5				
0.6		IIIg/kg III.3.		2000			0001	05.	777	000		001	95	0074	040	0001	000	70				
0.5 12 2 25 4 0.0		ma/ka M.S.		0.7			<0.05	<0.05	<0.05	0.12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
10 1 10 1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0		mg/kg M.S.		2			0.17	0.05	<0.05	20.0	0.15	0.13	0.12	<0.05	<0.05	<0.05	<0.05	<0.05				
0.5 d 1 5 5 a closing control		mg/kg M.S.		100			<0.1	<0.1	<0.1	0.19	<0.1	<0.1	<0.1	0.37	0.11	<0.1	<0.1	<0.1				
2 5 10 70 0 6 40 20 6		mg/kg M.S.		-			<0.001	<0.001	<0.001	0.002	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
2 5 10 0.05 <td></td> <td>mg/kg M.S.</td> <td></td> <td>10</td> <td></td> <td></td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>0.04</td> <td>20:0</td> <td>0.02</td> <td>0.03</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td></td> <td></td> <td></td> <td></td>		mg/kg M.S.		10			<0.02	<0.02	<0.02	0.04	20:0	0.02	0.03	<0.02	<0.02	<0.02	<0.02	<0.02				
0.11 0.0 <td></td> <td>mg/kg M.S.</td> <td></td> <td>20</td> <td></td> <td></td> <td>0.04</td> <td><0.02</td> <td>0.1</td> <td>0.22</td> <td>0.11</td> <td><0.02</td> <td>90.0</td> <td>0.08</td> <td><0.02</td> <td>0.04</td> <td>60:0</td> <td><0.02</td> <td></td> <td></td> <td>-</td> <td>-</td>		mg/kg M.S.		20			0.04	<0.02	0.1	0.22	0.11	<0.02	90.0	0.08	<0.02	0.04	60:0	<0.02			-	-
0.5		mg/kg M.S.		0.2			0.0004	0.0009	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003				
0.4 10 40 €0.05 €		mg/kg M.S.		10			0.07	0.08	0.1	0.23	0.14	<0.05	90.0	0.11	0.08	<0.05	<0.05	0.12				
0.5		mg/kg M.S.		10		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
0.1 0.5 7 <		mg/kg M.S.		10		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
4 So 200 0.03 0.06		mg/kg M.S.		9.0			<0.05	<0.05	<0.05	90:0	90.0	<0.05	90.0	<0.05	<0.05	<0.05	<0.05	<0.05				
It. The de quantification to be boronive n. A. Non defected. It. In the tendent of the standard of the standa		mg/kg M.S.	- 4	20			90.0	<0.02	<0.02	0.03	0.03	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02				
The design of a social of the design of the	Autres paramètres	97																				
Valuation receptable to the control of the control	Lu. Lilline de quantification de la déferentiel pétouse.	que en région Nord	- Pas-de-Calais (Percent	tile 95)																		
ISI edict net respects as a univair one des valeurs fraction soluble, le déchet put ét renone jugé of normeme au croître d'admission [en ISDI] s'il respecte soit les valeurs associée à la fraction soluble. In admission le construit au superior au sur les des des la construit de la	 Pour racceptation en ISDII, une vaieur limite plus eleves. Valeur limite des ISDI: valeur non réglementaire mais pa 	e peut etre admise, arfois appliquée par	les gestionnaires d'ISDI	IIIIIIe de 200 m.	ig/kg de matiere sk	cne son respectee pour	e caroone organique total	sur eluat, son au pri du so	, son pour un pri saue el	ntre / ,5 et o,0.												
nnentration superieruer au bruit de fon det irrierue eaux valeurs imites de nontration superierue aux valeurs limites des 150 et inférieruer aux valeur nomentration superieruer aux valeur onnentration suberieruer aux valeur aux valeur onnentration suberieruer aux valeur suberieruer aux valeur suberieruer aux valeur suberierueruerung valeur suberieruerung valeurerung valeurer	f) Si le déchet ne respecte pas au moins une des valeurs	fixées pour le chlo	rure, le sulfate ou la frac	tion soluble, le c	déchet peut être e	ncore jugé conforme aux	critères d'admission [en 15	Olj s'il respecte soit les va	leurs associées au chlo	rure et au sulfate, soit ce	elle associée à la fraction	on soluble.										
mentand superior as a value in mines des sont entre de la control de la	oncentration supérieure au bruit de fond et inférie	eure aux valeurs	limites de																			
ncentration unarierieura aux Waller in interes des ISIA, des ISIA, des ISIA, des ISIA	ncentration supérieure aux valeurs limites des l' ncentration supérieure aux valeurs limites des l'	SDND et inférieure	aux valeur																			
	oncentration subérieure aux valeurs limites des l'	SDI. des ISDND. de	OOSI SE																			

tion soluble, le déchet peut être encore jugé conforme aux crières d'admission [en ISD] s'il respecte soit les valeurs associées au chlorure et au suffate, soit celle associée à la fraction soluble.

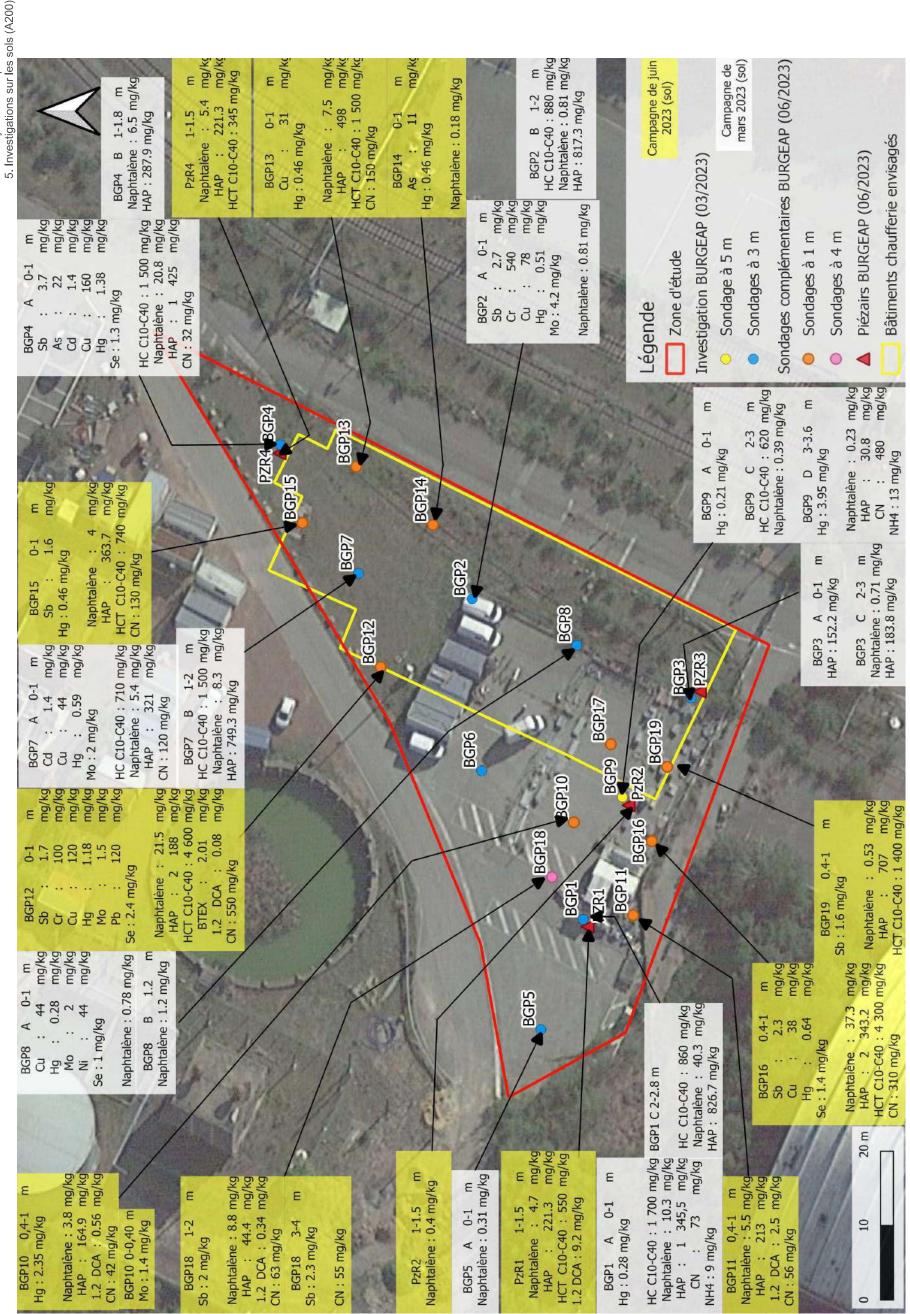


Figure 10 : Cartographie des anomalies de concentrations dans les sols (GINGER BURGEAP, mars et juin 2023)

Page 31/79 25/08/2023 JGRO/SEP Réf : NO3700187 / 1040141-02

6. Investigations sur les gaz des sols (A230)

L'objectif des investigations sur les gaz du sol est de définir le potentiel de dégazage des composés organiques volatils vers les milieux d'exposition (air intérieur et extérieur) et de servir de données d'entrée à l'évaluation de la compatibilité sanitaire du site avec l'usage futur (usage industriel).

6.1 Mise en place des piézairs

4 piézairs de 1,5 à 4 mètres de profondeur ont été mis en place par la société GINGER CEBTP (Pole sondage) le 26/06/2023. Ils sont localisés en **Figure 12**. Les coupes techniques des piézairs sont disponibles en **Annexe 5**.

Les cuttings de forage ont été laissés sur place. Aucun indice de pollution n'a été mis en évidence lors de la foration.

6.2 Echantillonnage des gaz des sols

Les prélèvements de gaz du sol ont été réalisés le 28/06/2023 par un intervenant de GINGER BURGEAP, par pompage à un débit de l'ordre de 0,2 L/min pendant 3 h. Le support adsorbant utilisé est :

- Un tube de charbon actif pour les composés organiques volatils (hydrocarbures C₅-C₁₆, BTEX, COHV et naphtalène;
- Un tube Hopcalite pour le mercure.

La durée de prélèvement a été choisie de manière à obtenir des limites de quantification pertinentes au regard des valeurs de comparaison choisies et des données disponibles sur l'état du milieu souterrain.

Les piézairs ont préalablement été purgés au même débit sur une durée 10 min.

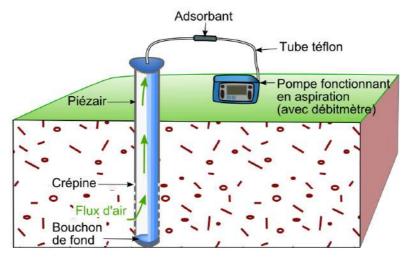


Figure 11 : Schéma du dispositif de pompage

Durant les prélèvements, la pression atmosphérique et la température ambiante ont été relevées et reportées sur les fiches de prélèvement de gaz du sol (**Annexe 6**).

Les conditions météorologiques les jours précédant les prélèvements étaient les suivantes :

Pression atmosphérique : 1 005 hPa ;

Température : 25° c ;

Humidité: 75 %;

Pluviométrie : absence de pluie les jours précédents les prélèvements.

Réf : NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 32/79

6.3 Conservation des échantillons

Les supports adsorbants ont été stockés en glacière jusqu'à leur arrivée au laboratoire.

6.4 Programme analytique sur les gaz des sols

Les analyses chimiques ont été réalisées par le laboratoire AGROLAB reconnu par le COFRAC.

Substances analysées
Hydrocarbures par TPH

4 + 1 blanc

BTEX
4 + 1 blanc

Naphtalène
4 + 1 blanc

COHV
4 + 1 blanc

Mercure
4 + 1 blanc

4 + 1 blanc

Tableau 10 : Analyses des gaz des sols

Ce programme inclut 1 échantillon de blanc de transport (support de prélèvement n'ayant pas servi pour le prélèvement mais appartenant au même lot de fabrication et ayant été transporté sur le site avec les autres supports). Ces blancs ont fait l'objet du même programme d'analyse que les autres échantillons.

6.5 Valeurs de référence pour les gaz des sols

Gaz des sols

Il n'y a pas de valeur réglementaire, ni de valeur de bruit de fond pour l'interprétation des concentrations dans les gaz des sols. Ainsi, dans les limites exposées ci-après, les valeurs de comparaison retenues sont celles retenues pour l'air atmosphérique/l'air intérieur (voir § suivant).

Cette comparaison des concentrations en polluants gazeux dans les sols avec les valeurs de référence définies pour l'air atmosphérique et/ou l'air intérieur est réalisée dans le seul objectif de hiérarchiser la pollution des gaz des sols au regard de ses impacts sanitaires potentiels, les gaz des sols ne pouvant être assimilés à l'air atmosphérique. Rappelons qu'un abattement des concentrations d'au minimum 1 à 2 ordres de grandeur (en fonction du contexte) peut être attendu lors du transfert des polluants gazeux depuis les sols vers l'air atmosphérique ou l'air intérieur.

Aussi, si les concentrations en polluants dans les gaz des sols sont inférieures ou du même ordre de grandeur que les valeurs de référence, les polluants volatils présents dans les gaz du sol ne sont pas susceptibles d'induire dans les milieux d'exposition des concentrations en ces mêmes polluants supérieures aux valeurs de référence. Aucune estimation de leur incidence sanitaire ne sera à effectuer.

Si les concentrations en polluants dans les gaz des sols dépassent les valeurs de référence retenues, une estimation des transferts des polluants volatils depuis les sols vers l'air ambiant/l'air intérieur sera nécessaire pour conclure quant aux incidences sanitaires. En l'absence de données sur les modalités de construction et de ventilation du bâti, les concentrations en polluants volatils dans l'air intérieur (et les risques induits) peuvent être estimées en appliquant un facteur d'atténuation de 0,05 (C_{Al}/C_{GdS}). Ce facteur précautionneux a été établi par l'US-EPA sur la base d'un grand nombre de mesures effectuées pour diverses configurations constructives. Les concentrations ainsi estimées peuvent être jugées a priori sécuritaires dans le cadre d'une évaluation des risques sanitaires.

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux des résultats d'analyse.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 33/79

Air atmosphérique

Les concentrations mesurées seront comparées :

- Aux valeurs réglementaires françaises et européennes définies pour l'air ambiant :
 - air extérieur : décret n°2010-1250 du 21 octobre 2010 (transposition de la directives 2008/50/CE du 21 mai 2008);
 - air intérieur : décret n°2011-1727 du 2 décembre 2011 (annexe de l'article R221-29 du Code de l'Environnement);
- Aux valeurs guides de qualité de l'air intérieur (VGAI) de l'ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail) ;
- Aux valeurs repères établies par le HCSP (Haut conseil de la santé publique);
- Aux valeurs guides proposées par l'OMS (Air Quality Guidelines for Europe, 2010) et par le projet INDEX (Critical Appraisal of the setting and implementation of indoor exposures limits in the EU, 2005):
- Aux valeurs de bruit de fond :
 - percentile 90 source OFFICAIR pour le bruit de fond bureau ;
 - synthèse des données des associations agréées pour la surveillance de la qualité de l'air (AASQA); rapport INERIS DRC-08-94882-15772A de 2009 (air extérieur);

Pour les blancs de transport, les résultats sont comparés aux limites de quantification du laboratoire.

6.6 Résultats et interprétation des analyses sur les gaz des sols

Les résultats des analyses sont présentés dans le **Tableau 11** et synthétisés en **Figure 12**. Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en **Annexe 7**.

Les résultats d'analyses, après application du coefficient d'abattement de 0,05, mettent en évidence :

- Un dépassement de la valeur règlementaire en air intérieur pour le benzène au droit de PzR1;
- Un dépassement du bruit de fond bureau en air intérieur en trichloroéthylène (TCE) au droit de PzR2;
- Un dépassement du bruit pour l'air extérieur en naphtalène au droit de PzR4;
- La présence de :
 - hydrocarbures aliphatiques C₆-C₁₆ et aromatiques C₆-C₁₀;
 - COHV, essentiellement du TCE, 1,2-dichloroéthane et plus ponctuellement du chloroforme, 1,1,1-trichloroéthane, chlorure de vinyle et du tétrachloroéthylène (PCE).

Les principaux impacts en hydrocarbures, benzène et COHV dans les gaz du sol sont mesurés au droit de PzR1. Ces impacts sont à mettre en corrélation avec les impacts mesurées dans les sols au droit de ce piézairs (pour le 1,2-dichloroéthane au moins).

Les résultats d'analyses sur les gaz des sols sont cohérents avec ceux mesurés dans les sols investigués et analysés.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 34/79

Tableau 11 : Résultats des analyses des échantillons des gaz des sols

			AID EXTEDIBIID			AID INTEDIEID				Camp	agne de preiev	Campagne de prelevement du 28/06/2023	6/2023		
										Futur bâtime	Futur bâtiment chaudière			Espaces	Espaces extérieurs
	Brui		valeurs réglementaire		Bruit de fond	Valeur	VGALANSES.	Pz	PzR 1	Pzi	PzR 2	Pz	PzR 3	Pz	PzR 4
	nos)	(source 00Al	s - décret n°	Valeurs guide	bureau	réglementaire	VRAI HCSP,	Intéi	Intérieur	Intér	Intérieur	Inté	Intérieur	Exté	Extérieur
	INE CO	(urbain)	(valeur limite/valeur	OMS	(P90 - source OFFICAIR)	Décret n° 2011- 1727	INDEX, VG OMS (1)	Résultat brut	Avec facteur d'abattement	Avec facteur d'abattement Résultat brut de 0.05	Avec facteur d'abattement	Résultat brut	Avec facteur d'abattement	Résultat brut	Avec facteur Résultat brut d'abattement
Métaux et métalloïdes			cible)						2000 20		2000		200 20		2000 20
Mercure (Hg) (2)	mg/m3			0.001	-	•	,	<0.00009	<0.0000047	2.90E-04	1.50E-05	<0.0001	<0.0000049	<0.0001	<0.0000049
ě															
Aliphatic nC>5-nC6	Em/bm	-	-	-	0.0049	-	-	<0.056	<0.0028	<0.056	<0.0028	950.0>	<0.0028	<0.056	<0.0028
Aliphatic nC>6-nC8	mg/m3	-	-	-	-	-	-	1.30E-01	6.40E-03	<0.056	<0.0028	<0.056	<0.0028	<0.056	<0.0028
Aliphatic nC>8-nC10	mg/m3	-	-	-	-	-	-	7.50E-01	3.80E-02	<0.056	<0.0028	<0.056	<0.0028	<0.056	<0.0028
Aliphatic nC>10-nC12 (3)	mg/m3 0	0.0098	-	-	-	-	-	4.70E-01	2.40E-02	<0.056	<0.0028	5.80E-02	2.90E-03	<0.056	<0.0028
Aliphatic nC>12-nC16	mg/m3	1	1	•	•	'	,	9.20E-02	4.60E-03	<0.056	<0.0028	<0.056	<0.0028	<0.056	<0.0028
Aromatic nC>6-nC7 (benzène)	mg/m3 voir	voir benzène	voir benzène	voir benzène	-	voir benzène	voir benzène	6.70E-02	3.30E-03	1.70E-02	8.30E-04	<0.0014	<0.0000069	7.50E-03	3.80E-04
Aromatic nC>7-nC8 (toluène)		voir toluène	voir toluène	voir toluène	-	voir toluène	voir toluène	1.60E-02	7.90E-04	2.70E-02	1.30E-03	1.70E-02	8.50E-04	1.10E-02	5.70E-04
Aromatic nC>8-nC10	mg/m3	,	1	,	•	•	'	9.70E-02	4.90E-03	8.60E-02	4.30E-03	1.30E-01	6.50E-03	<0.056	<0.0028
Aromatic nC>10-nC12	mg/m3		•	,	•	•	,	<0.056	<0.0028	<0.056	<0.0028	<0.056	<0.0028	<0.056	<0.0028
Aromatic nC>12-nC16	mg/m3		•	,	•	•	,	<0.056	<0.0028	<0.056	<0.0028	<0.056	<0.0028	<0.056	<0.0028
Somme des TPH	mg/m3	,		٠	•	,	,	1.62E+00	8.20E-02	1.30E-01	6.43E-03	2.05E-01	1.03E-02	1.85E-02	9.50E-04
ВТЕХ															
Benzène		0.0022	0.005	0.0017	0.00442	0.002	0.002	6.70E-02	3.30E-03	1.70E-02	8.30E-04	<0.0014	<0.0000069	7.50E-03	3.80E-04
Toluène	4	6000	-		0.0219		20	1.60E-02	7.90E-04	2.70E-02	1.30E-03	1.70E-02	8.50E-04	1.10E-02	5.70E-04
Ethylbenzène		0.0021		•	0.0045	•	1.5	4.70E-03	2.40E-04	5.30E-03	2.60E-04	6.40E-03	3.20E-04	<0.0028	<0.00014
m+p - Xylène		0.0056	•	٠	0.0135	•	0.2	2.10E-02	1.10E-03	2.80E-02	1.40E-03	3.30E-02	1.70E-03	1.30E-02	6.50E-04
o - Xylene	mg/m3 0	0.0023			0.0135	•	0.2	8.10E-03	4.00E-04	9.40E-03	4.70E-04	1.10E-02	5.30E-04	4.40E-03	2.20E-04
Autres HAM															
Naphtalène	mg/m3 0.	0.00000.0			0.0008	•	0.01	5.00E-03	2.50E-04	<0.0028	<0.00014	6.70E-03	3.30E-04	4.20E-03	2.10E-04
COHV															
Tétrachloroéthylène (PCE)	4	0.0024	-	0.25	0.0011	-	0.25	<0.0056	<0.00028	<0.0056	<0.00028	1.30E-02	6.30E-04	7.20E-03	3.60E-04
Trichloroéthylène (TCE)		0.0016	-	0.023	0.0001	-	0.01	1.70E-03	8.30E-05	2.20E-03	1.10E-04	<0.0014	<0.000069	<0.0014	<0.000069
Cis-1,2-dichloroéthylène	mg/m3	•	•	٠	•	•	•	<0.0056	<0.00028	<0.0056	<0.00028	<0.0056	<0.00028	<0.0056	<0.00028
Trans-1,2-dichloroéthylène	mg/m3	,	•	'	•	'	,	<0.0056	<0.00028	<0.0056	<0.00028	<0.0056	<0.00028	<0.0056	<0.00028
1,1-dichloroéthylène	mg/m3	,	•	,	•	•	,	4.70E-02	2.40E-03	<0.0028	<0.00014	<0.0028	<0.00014	<0.0028	<0.00014
Chlorure de Vinyle	mg/m3	-	-	0.01	-	-	-	7.10E-02	3.50E-03	<0.0028	<0.00014	<0.0028	<0.00014	<0.0028	<0.00014
1,1,2-trichloroéthane	mg/m3	-	-	-	-	-	-	<0.0056	<0.00028	<0.0056	<0.00028	<0.0056	<0.00028	<0.0056	<0.00028
1,1,1-trichloroéthane	mg/m3	,	•	,	•	,	,	<0.0056	<0.00028	1.30E-01	6.30E-03	6.70E-02	3.30E-03	9.20E-02	4.60E-03
1,2-dichloroéthane	mg/m3	,	-	,	•	•	,	9.00E-01	4.50E-02	6.40E-02	3.20E-03	<0.0056	<0.00028	1.10E-02	5.60E-04
1,1-dichloroéthane	mg/m3	-	-	-	_	-	,	<0.0056	<0.00028	5.60E-03	2.80E-04	<0.0056	<0.00028	<0.0056	<0.00028
Tétrachlorométhane (tétrachlorure de carbon	гш/бш	-	-	-	-	-	-	<0.0056	<0.00028	6.10E-03	3.10E-04	9500.0>	<0.00028	<0.0056	<0.00028
Trichlorométhane (chloroforme)	гш/бш	-	-	-	-	-	-	<0.0056	<0.00028	1.00E-02	5.10E-04	1.10E-02	5.30E-04	3.60E-02	1.80E-03
Dioblosomóthoso	0-7			ſ				6900 0>	<0.00035	6900 U>	<0.00035	6900 0>	<0.00035	00000	~0.00035

(1) en gras : valeur repère du HCSP, souligné : valeur guide de l'ANSES (VGAI), en italique : valeur guide projet

(2) valeur guide OMS relative au mercure inorganique

(3) La valeur de bruit de fond OQAl concerne la somme du n-décane et du n-undécane.

épassant 5 % de la concentration mesurée dans la zone de mesure AIR Exterieur AIR Interieur r en bleu : concentration dans la zone de contrôle entration supérieure au bruit de fond entration supérieure aux valeurs règlementaires Concentration supérieure à une valeur guide
Concentration supérieure au bruit de fond
Concentration supérieure aux valeurs règlementaires
Concentration supérieure à une valeur guide Page 35/79 25/08/2023 JGRO / SEP Réf : NO3700187 / 1040141-02

6. Investigations sur les gaz des sols (A230)

BGP4 B 1-1.8 m Naphtalène : 6.5 mg/kg HAP : 287.9 mg/kg

425 mg/kg

CN: 32 mg/kg

HAP : 1

BGP4 A 0-1 m HC C10-C40 : 1 500 mg/kg Naphtalène : 20.8 mg/kg

1-1.5 m e : 5.4 mg/kç

Naphtalène

mg/ke

221.3

HAP :

HCT C10-C40: 345 mg/kg

Naphtalène : 4.2 E-03 mg/m3 PCE : 7.2 E-03 mg/m3 1.2 DCA : 1.1 E-02 mg/m3

COHV: 1.46 E-01 mg/m3

HCT C5-C16: 1.85 E-02 mg/m3

Benzène : 7.5 E-03 mg/m3 BTEX : 3.6 E-02 mg/m3

mg/k

Naphtalène :

BGP13

498

HAP

0-1

HCT C10-C40: 1 500 mg/k CN: 150 mg/kg

BGP14 0-1 m Naphtalène: 0.18 mg/kg

BGP14

BGP2 B 1-2 m HC C10-C40: 880 mg/kg Naphtalène: 0.81 mg/kg HAP: 817.3 mg/kg

Naphtalène: 0.81 mg/kg

E

Ε

0-1

V

BGP2

Campagne de juin 2023 (gaz du sol)

mars 2023 (sol) Campagne de

Campagne de juin

Légende

2023 (sol)

Zone d'étude

Sondages complémentaires BURGEAP (06/2023)

Sondages à 1 m

0

mg/kg mg/kg

Naphtalène : 0.23 I HAP : 30.8 I CN : 480 I

E

1-1.5

Naphtalène: 5.5 mg/kg HAP: 213 mg/kg 1.2 DCA: 2.5 mg/kg CN: 56 mg/kg

BGP16 0.4-1

Naphtalène: 0.4 mg/kg

mg/kg

NH4: 13 mg/kg

Sondages à 4 m

Piézairs BURGEAP (06/2023)

Investigation BURGEAP (03/2023)

Ε

BGP3 A 0-1 HAP: 152.2 mg/kg

Bâtiments chaufferie envisages

Ε

Figure 12 : Localisation des piézairs et synthèse des impacts dans les gaz des sols (GINGER BURGEAP, juin 2023)

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 7. Synthèse des impacts et schéma conceptuel

7. Synthèse des impacts et schéma conceptuel

7.1 Synthèse des impacts dans les différents milieux

Les investigations réalisées ont mis en évidence les impacts suivants :

- Impacts quasi généralisés dans les sols de surface en HAP (dont le naphtalène), hydrocarbures C₁₀-C₄₀ et cyanures, et ponctuellement jusque 4 m de profondeur au droit du futur bâtiment de la chaudière biomasse et des espaces extérieurs au nord du futur bâtiment ;
- Des impacts ponctuels en COHV et BTEX dans les sols jusque 2-3 m de profondeur. Ces impacts ponctuels sont également retrouvés dans les gaz du sol ;
- Un bruit de fond sur l'ensemble du site en hydrocarbures, COHV, BTEX et naphtalène dans les gaz du sol;
- Des dépassements du bruit de fond du Nord-Pas-de-Calais en métaux dans les remblais superficiels.

7.2 Schéma conceptuel

Sur la base des résultats des investigations, le schéma conceptuel pour les usages futurs et intégrant les caractéristiques du projet comme rappelé ci-dessous, peut être mis à jour (cf. **Figure 13**).

Usage pris en compte	 Création d'une chaudière biomasse ; Voie de circulation pour véhicules lourds
	Au regard des observations réalisées au cours des investigations et notre connaissance de la géologie locale, la succession des formations géologiques au droit du site est la suivante (sous un recouvrement minéral de type enrobé ou béton) :
Géologie et	Remblais entre 0 et 1 m de profondeur ;
hydrogéologie	Limons argileux jusqu'environ 2 m de profondeur
	Craie du Sénonien.
	La nappe de la craie est attendue entre 4 et 5 m de profondeur et s'écoule vers le nordest.
Impacts identifiés	Voir paragraphe 7.1
	Sur site : les enjeux à considérer sont les employés sur site (2 personnes à temps plein).
Enjeux à considérer	Hors site: en l'absence d'information sur la qualité des eaux souterraines et compte tenu de la présence d'impacts mesurés jusqu'au moins 3,6 m, un transfert vers la nappe est possible. Un impact hors site n'est pas à exclure.
Voies de transfert depuis les milieux impactés vers les milieux d'exposition	L'ensemble du site sera entièrement recouvert par des bâtiments et de l'enrobé. Ainsi, les voie de de transfert à considérer sont la volatilisation de composés des composés volatils (hydrocarbures, naphtalène, BTEX, COHV, mercure); la migration potentielle vers la nappe et la perméation au travers des canalisations AEP.
Voies d'exposition	Au droit des zones recouvertes, les voies d'exposition à considérer sont l'inhalation de composés volatils issus du milieu souterrain (zone non saturée et potentiellement de la zone saturée également) et l'ingestion d'eau contaminée.

Réf : NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 37/79

ENGIE SOLUTIONS

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 7. Synthèse des impacts et schéma conceptuel

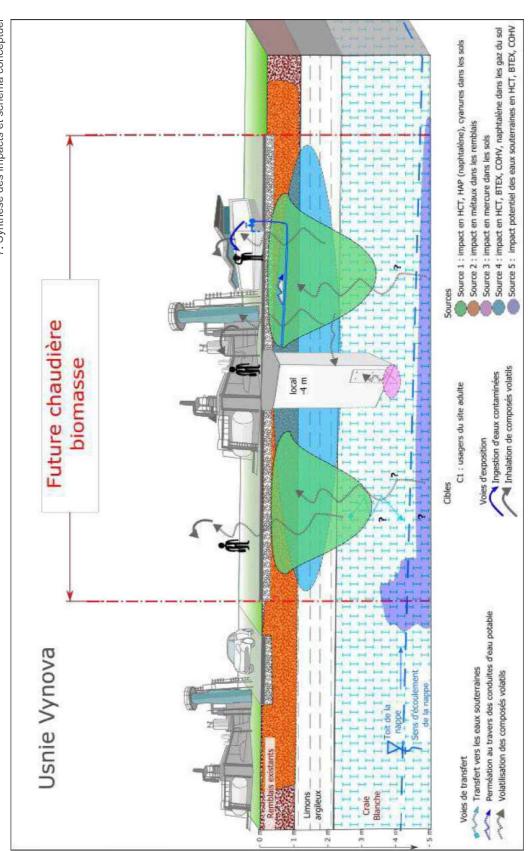


Figure 13 : Schéma conceptuel

8. Plan de gestion des terres excavées

8.1 Objectifs et méthodologie

La méthodologie nationale de gestion des sites et sols pollués du 19 avril 2017 indique, en son §4.1.2, que « quelle que soit la nature des polluants, lorsque les volumes de terres polluées en cause sont limités et accessibles, les terres sont excavées et évacuées vers les filières de gestion appropriées sans engager d'études lourdes et coûteuses qui devraient aboutir finalement à cette option de gestion. Dans ce cas précis, le bilan coût-avantage n'est pas nécessaire et le plan de gestion se limite à décrire les actions engagées ».

Ainsi, et comme les terres impactées identifiées au droit du site sont intégrées dans les excavations qui seront réalisées dans le cadre des travaux d'aménagement, seul un plan de terrassement et les modalités de gestion des terres excavées (évacuation, réemploi, traitement) sont présentés dans la suite du présent rapport.

Les terres excavées, qu'elles soient polluées ou non, prennent un statut de déchet dès lors qu'elles sont évacuées du site dont elles sont extraites (note ministérielle 20-106 du 10 décembre 2020 qui annule et remplace en partie la nomenclature déchets du 25 avril 2017). En conséquence et selon l'article L. 541-2, le producteur ou le détenteur des terres excavées doit en assurer ou en faire assurer la gestion jusqu'à leur élimination ou valorisation finale.

Selon leur qualité et classification au regard notamment de l'arrêté du 12 décembre 2014 relatif aux conditions d'admission des déchets inertes dans les installations relevant des rubriques 2515, 2516, 2517 et des installations de stockage de déchets inertes relevant de la rubrique 2760 de la nomenclature des installations classées, elles doivent être orientées dans des filières spécifiques en cas d'évacuation.

Dans une logique de réduction des déchets à la source et conformément aux objectifs réglementaires (article L. 541-1 du code de l'environnement ; loi de transition énergétique n°2015-992 du 17 aout 2015 ; loi n° 2020-105 du 10 février 2020 relative à la lutte anti gaspillage et à l'économie circulaire (Loi AGEC)), il est par ailleurs nécessaire de privilégier, quand cela est possible, leur valorisation par réemploi sur site ou hors site à leur élimination en filière de stockage.

Les objectifs de la définition des modalités de gestion des terres excavées sont ainsi de proposer et de justifier la stratégie à mettre en œuvre tout en garantissant la compatibilité sanitaire entre la qualité des milieux au droit du site et l'usage futur et d'autre part limiter les surcoûts liés à l'évacuation hors site des matériaux impactés et/ou non inertes. Il s'agit donc :

- D'estimer les surcoûts de gestion hors site des matériaux impactés ;
- D'étudier la possibilité de valoriser par réemploi une partie des matériaux au droit du site ;
- D'envisager des pistes d'optimisation et de valorisation supplémentaires ;

A noter que la présente étude porte uniquement sur les aspects environnementaux du sous-sol et ne traite pas des aspects géotechniques.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 39/127

8.2 Mesures générales de gestion envisagées

Compte tenu de la présence de sols impactés et non inertes au droit du projet d'aménagement, les mesures générales de gestion suivantes seront mises en œuvre :

- Terrassement des sols, tri et évacuation vers des filières de traitement/stockage adaptées ou en confinement par encapsulation;
- Protection des canalisations d'eau potable vis-à-vis de l'intrusion de polluants et vapeurs de polluants par :
 - la mise en place des canalisations dans des tranchées comblées avec des matériaux non pollués (sablons classiquement utilisés pour les lits de pose et le remblaiement des tranchées);
 - la mise en œuvre de canalisations composées de matériaux étanches, anti-perméation (métalliques ou de type tri couche par exemple).
- En dehors de l'emprise des bâtiments, les zones impactées en hydrocarbures, HAP et cyanures restant en place seront recouvertes d'un enrobé ou d'une surface minérale exempte de pollution pour les futurs parkings et voiries.

8.3 Clé de répartition des terres

Les terres devant être éliminées hors site devront être évacuées en filières spécifiques. Sur la base de leurs caractéristiques physico-chimiques et des critères d'acceptation des filières de traitement, les filières d'élimination identifiées envisageables sont les suivantes :

- Filière ISDI;
- Filière ISDI + (à seuils rehaussés);
- Filière de type biocentre ;
- Filière de type ISDND ;
- Filière de type ISDD.

Le **Tableau 12** présente la clé de répartition des matériaux échantillonnés lors des investigations menées en mars et juin 2023.

Tableau 12 : Clé de répartition des matériaux

Zone de terrassement (source ENGIE)	Sondage	Profondeur (m), hypothèse de	surface	Paramètres déclassant	Filière d'élimination envisagée			
Zone des bennes	BGP 4	terrassement 0-0,5 m	81	HCT: 1 400 mg/kg HAP: 1 425 mg/kg	ISDND ou équivalent			
Zone des bennes	BOF 4	0-0,5 III	01	Cyanures : 32 mg/kg Fluorures : 11 mg/kg	isbNo od equivalent			
	BGP13		110	HCT C10-C40: 4 600 mg/kg				
	BGP 15		70	HAP: 2 190 mg/kg	0.00			
220000000000000000000000000000000000000	BGP 7	19.00.000000	90	Cyanures : 550 mg/kg	ISDD ou équivalent			
Chaufferie	BGP 12	0-0.5 m	30	Fluorures : 13 mg/kg				
	BGP 14		130	-	ISDI			
	BGP 2		250	Fluorures : 22 mg/kg	ISDI+			
	BGP 8	2002 FT2	200	Fluorures : 16 mg/kg	ISDI +			
Echelles + Verrins	BGP 6	0-0.5 m	72	Sulfates: 1500 mg/kg	ISDI			
ō.	501 0		/ / -	Fluorures : 16 mg/kg	1301			
	BGP 8	0-0.5 m	150	Sulfates: 1500 mg/kg	ISDI +			
Stockage passif	BGP 3	0-0.5 m	200	HAP: 153.2 mg/kg Fraction soluble: 4 800 mg/kg Sulfates: 2 800 mg/kg	Biocentre ou équivalent			
Locaux techniques	BGP 12	0-0.5 m	68	HCT C10-C40 : 4 600 mg/kg HAP : 2 190 mg/kg Cyanures : 550 mg/kg Fluorures : 13 mg/kg	ISDD ou équivalent			
	BCD 3	005	70	Sb sur éluat : 0.12 mg/kg	ICDI :			
0	BGP 2	0-0.5 m	70	Fluorures : 22 mg/kg	ISDI +			
	-	0-1 m	120	FAMILIA HARA	ISDI			
	BGP 17 -	1-2 m	120 120	Extrapolation BGP9	Biocentre ou équivalent			
	3=	2-3 m	20	Extrapolation BGP9	Biocentre ou équivalent			
D/-1		3-4.5 m	120	Extrapolation BGP9	ISDD ou équivalent			
Déchargement		0-1 m	80	HCT: 1 400 mg/kg HAP: 707 mg/kg	Biocentre ou équivalent			
	BGP 19	1-2 m	80	Extrapolation BGP9	Biocentre ou équivalent			
	3	2-3 m	80	Extrapolation BGP9	Biocentre ou équivalent			
		3-4.5 m	80	Extrapolation BGP9	ISDD ou équivalent			
Convoyeur	BGP 8	1.3	17	Fluorures : 16 mg/kg	ISDI +			
	BGP1	0-0.8 m	105	Sulfates: 1500 mg/kg HAP: 1350 mg/kg Cyanures 73 mg/kg	ISDD ou équivalent			
	BGP3	0-0.8 m	110	HAP: 153.2 mg/kg	Biocentre ou équivalent			
		20202000	(d)	Fraction soluble : 4 800 mg/kg	\$1			
	BGP5	0-0.8 m	332		ISDI			
	BGP6	0-0.8 m	390) -	ISDI			
	BGP9	0-0.8 m	35	Fraction soluble : 5 900 mg/kg	ISDI +			
	BGP10 -	0.4-0.8 m	35	Sulfates : 3 100 mg/kg HAP : 165 mg/kg Cyanures : 42 mg/kg	Biocentre ou équivalent ISDI			
		78 CO 1815		Sulfates: 1500 mg/kg				
	9	0-0.4 m	110		(E)			
	0-0.4 m BGP11 0.4-0.8 m		110	HAP : 213 mg/kg COHV : 2.52 mg/kg Cyanures : 56 mg/kg	Company of the second			
Espaces extérieurs / voiries	BGP12	0-0.8 m	35	HCT C10-C40 : 4 600 mg/kg HAP : 2 190 mg/kg Cyanures : 550 mg/kg Fluorures : 13 mg/kg Sb sur éluat : 0.12 mg/kg	ISDD ou équivalent			
	BGP16 0-0.8 m		85	HCT: 4 300 mg/kg HAP: 2 343 mg/kg Cyanures: 310 mg/kg Fraction soluble: 8 300 mg/kg Sulfates: 4 200 mg/kg Fluorures: 13	ISDD ou équivalent			
	BGP18	0-0.8 m	86	Extrapolation BGP10	Biocentre ou équivalent			
	BGP4	0-0.8	170	HCT: 1 400 mg/kg HAP: 1 425 mg/kg Cyanures: 32 mg/kg Fluorures: 11 mg/kg	ISDND ou équivalent			
	Compléments emprise foncière	0-0.8	1350	Extrapolation Equivalent	ISDND ou équivalent			

Figure 14 : Localisation des mailles

8.4 Estimation des volumes des matériaux à excaver dans le cadre du projet

Une mise à jour a été transmise par la suite en Août

8.4.1 Hypothèses prises en compte

Les volumes des terres caractérisées qui seront excavées dans le cadre du projet ont été estimés par horizon sur la base du plan de maillage établi (**Figure 14**).

La définition des volumes de déblais à excaver repose sur les hypothèses suivantes :

- Prise en compte des épaisseurs de terrassement transmises par ENGIE le 13/07/2023, par mail;
- Prise en compte des résultats analytiques des campagnes de prélèvements de sols de mars et juin 2023;
- En l'absence de données sur une maille : attribution de la donnée la plus contraignante par extrapolation de données disponibles sur un horizon similaire des mailles limitrophes ;
- Orientation des terres présentant les indices organoleptiques suspects vers une filière de type ISDND:
- Les volumes considérés sont des volumes strictement au droit des zones d'excavations. Aucune contrainte technique de terrassement telle que des talutages, des rampes d'accès, pieux, fondations n'est prise en compte;
- En cas d'existence de plusieurs sondages au droit d'une maille, la donnée la plus contraignante a été prise en compte;
- Les volumes pris en compte pour les calculs de coûts sont des volumes de terres non foisonnés (terres en place);
- L'hypothèse de densité apparente du sol retenue est de 1/8

8.4.2 Volumes de terres excavées

Les estimations de volumes de terres menées à être excavées dans le cadre du projet d'aménagement, par filière sont présentés ci-après.

Les volumes nous ont été transmis par ENGIE, y compris les volumes des fondations profondes, massif cheminée et tranchées diverses.

Le massif cheminé et les tranchées diverses correspondant à des terrassements superficiels, nous avons considéré que ces matériaux seraient réputés non inertes.

Concernant les fondations profondes, nous avons retenus comme hypothèse :

• 1/3 des matériaux inertes ;

2/3 des matériaux non inertes.

Ce n'est pas ce qui est indiqué dans le tableau récapitulatif en début de document où vous indiqués un volume foisonné

Pieux non pris en compte?Contradi ctoire avec le paragraphe suivant où vous les prenez en compte

Tableau 13 : Répartition des volumes en place par filières dans le cadre du projet d'aménagement

						Repartition	des tranche	Répartition des tranches de sols par catégorie	catégorie						Répartition des v	Répartition des volumes non foisonnés (en place) -m ³	ıds (en place) m³	
Cubature d	Cubature des terres impactées		A1 (terres inertes, ISDI)	tes, ISDI)	ISDI + (fillère spécifique)		81 (ISDND ou équivalent)		82 (biotraitement ou équivalent)	ment ou c (a	(SDD ou equivalent)	ratent)	Remarques	IA.			82 (Diotraitement	c (ISDB ou
Aménagement	Points de sondages	Surperficie (m² environ)	Niveau supérieur	Niveau	Niveau	Niveau Inférieur	Niveau	Niveau inférieur	Niveau supérieur	Niveau I	Niveau Ni superieur inf	Niveau		(sour)	(micro spourque a souils rethaussés)	équivalent)	ou équivalent)	équivalent)
						Tel	erres à	à excaver el	SECTION 1	à évacı	uer po	ıer pour la réa	réalisation du projet	et				
Zone des Bennes	BGP4	18					0	0.5					HCT: 1 400 mg/kg HAP: 1 426 mg/kg Cyanures 32 mg/kg	0	0	14	0	0
	BGP13	110					4 4					0.5	HCT C10-C40: 4 600 mg/kg	0	0	0	0	33
Chaufferie	BCP 7	30									0 0 0	0.5	Cyanures: 550 mg/kg	000	000	000	0 0 0	35 5
	8GP 14	130	0	0.5	c	50					H		Fluorines: 12 mg/kg	. 53	0 125	0 0	000	100
Echelles + Verrins	BGP 8	2002				0.5) :	16	0.00		Fluorures: 16 mg/kg Sulfates: 1500 mg/kg	. 0	100	0	0	0 0
	BGP 6	72	0	0.5			Sk pc							36	0	0	0	0
Stockage naceif	BGP 8	150				0.5							Sufates: 1500 mg/kg	0	7.5	0	0	0
more de	BCP 3	200							0	0.5			Fraction soluble : 4 800 mg/kg Sulfates : 2 800 mg/kg	0	0	0	100	0
Locaux techniques	BGP 12	89									0	0.5	HCT C10-C40 : 4 600 mg/kg HAP : 2 190 mg/kg Cyanues: 550 mg/kg Floorues: 13 mg/kg Sb sur éluat: 012 mg/kg	0	o	0	0	æ,
	BCP 2	97.	-	-	0	9.5			-	n	N	4.5	Fluorures: 22 mg/kg	0 001	35	0	0	0 001
Déchargement	8CP19	80	>				0	-		n m		4.5	HCT 1 400 mg/kg	0	0	2 08	160	120
Convoyeur	BGP 8	17			0	0.5			gi)				Fluorures: 16 mg/kg	0	Ø	0	0	0
	BGP1	105						X			0	8.0	HAP : 1350 mg/kg Cyanures 73 mg/kg	0	0	0	0	48
	8GP3	011							0	0.8			HAP : 153.2 mg/kg Fraction soluble : 4 800 mg/kg Sulfeton 2 800 mg/kg	0	0	ō	88	0
	8675	332	00	0.8									Andrew 7 Canada	266	0 0	0	0	0.0
	8699	40 %	0	8:0	6	2.0	0.4	0						32	002	0 2	000	000
	BGP11	110	0	4.0	,	t	t	0			0.4	8.0	HAP : 213 mg/kg COHV : 2.52 mg/kg	\$	0		0	3
Espaces Extérieurs / Voiries	BGP12	55							N. V		0	9.0	HCT CRO-CAD - 4 600 mg/kg HAP - 2 190 mg/kg Cyanures - 550 mg/kg Fluctures - 13 mg/kg Sb our élust - 0.12 mg/kg	0	0	0	0	28
	BCP16	85					<i>x</i>			8	0	8:0	HCT - 4 300 mg/kg HAP - 2 343 mg/kg Cyanures - 313 mg/kg Fraction soluble - 8 300 mg/kg Sulfates - 4 200 mg/kg Findrine - 1 3	0	0	0	0	89
	8GP18	98							0	6.0			Extrapolation BGP10	0	0	0	69	0
	8GP4	170	1)				0	9.8			-		HCT 1400 mg/kg HAP. 1425 mg/kg Cyanures: 32 mg/kg Fluorures: 11 mg/kg	0	o	136	0	o
	Compléments emprise foncière	1350					0	9.0						0	0	1 080	0	0
Fondation profonde														260	0	0	0	520
Massif cheminée						,								o	0	o	0	100
Tranchées divers															0	0	0	100
											Tot	al volume: rtes à terr	Total volumes des terres inertes et non inertes à terrasser	1135	358	1351	<i>L</i> S9	1 428

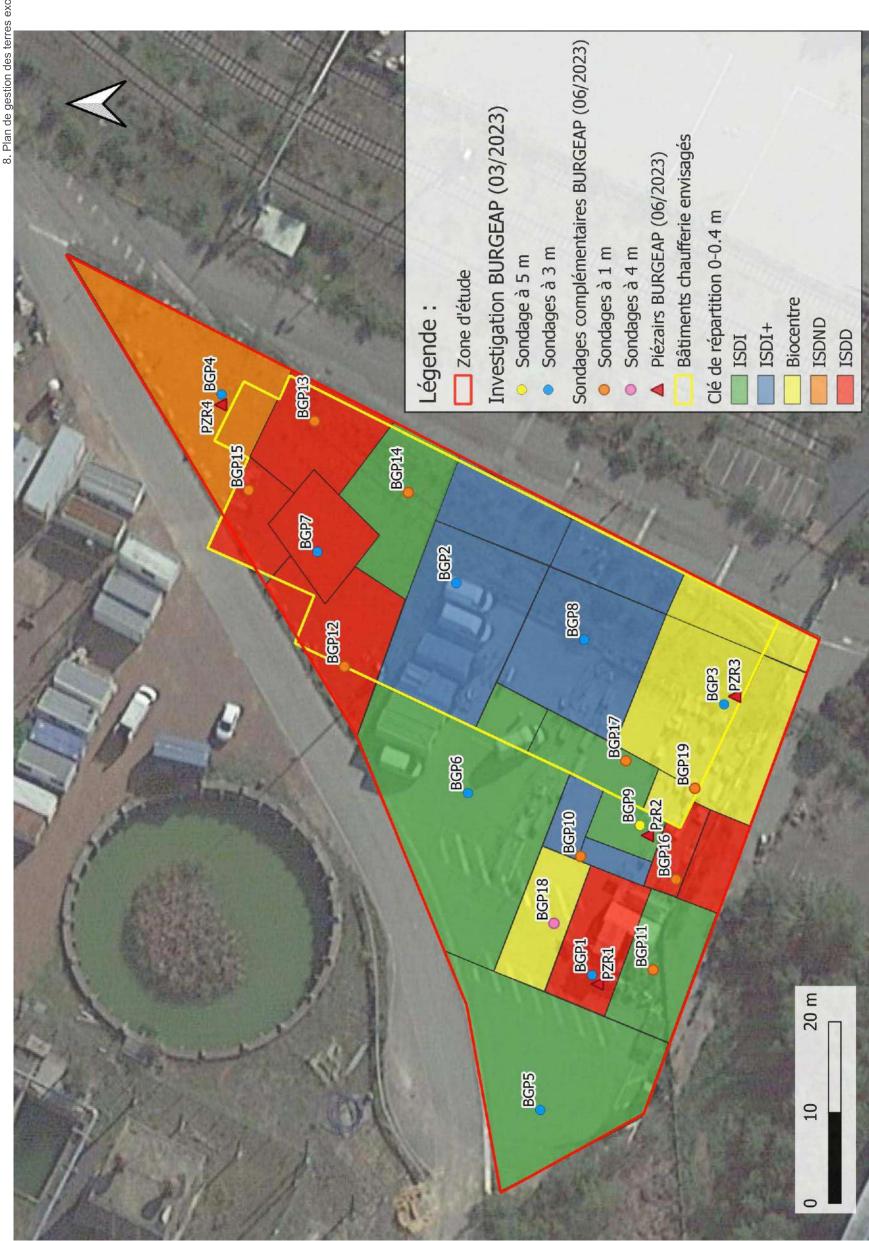


Figure 15: Plan de terrassement entre 0 et 0,4 m de profondeur

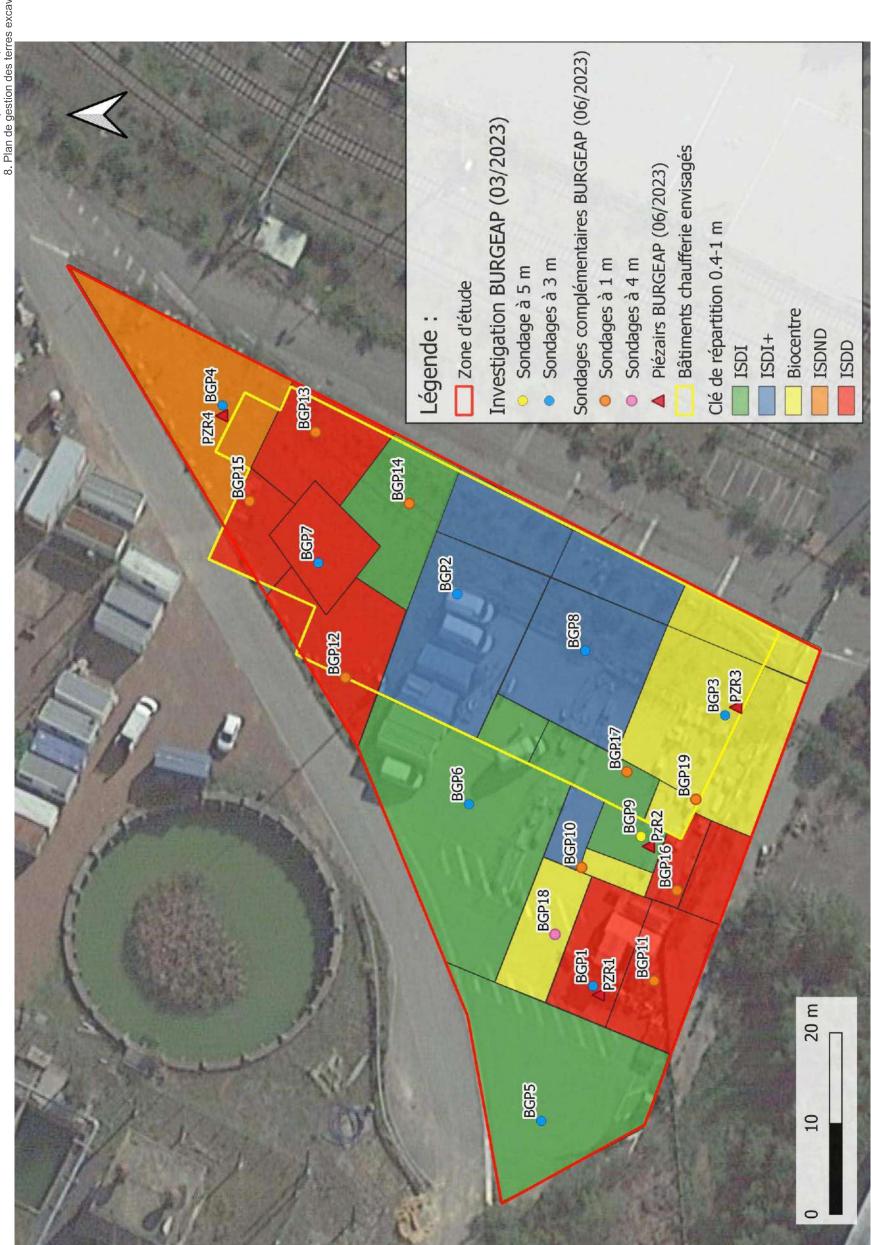


Figure 16: Plan de terrassement entre 0,4 et 1 m de profondeur

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 8. Plan de gestion des terres excavées Sondages complémentaires BURGEAP (06/2023) Investigation BURGEAP (03/2023) Bâtiments chaufferie envisagés Piézairs BURGEAP (06/2023) Clé de répartition 1-2 m Sondages à 1 m Sondages à 4 m Sondages à 3 m Sondage à 5 m ☐ Zone d'étude Biocentre Légende: PZR4 BGP4 **BGP13** BGP15 BGP14 BGP7 BGP8 BGP12 BGP3 PZR3 BGP19 BGP6 BGP9 BGP10 BGP18 BGP1 PZR1 20 m

BGP5

Figure 17: Plan de terrassement entre 1 et 2 m de profondeur

10

Bgp290/21 25/08/2023 Page 47/127 JGRO/SEP Réf : NO3700187 / 1040141-02

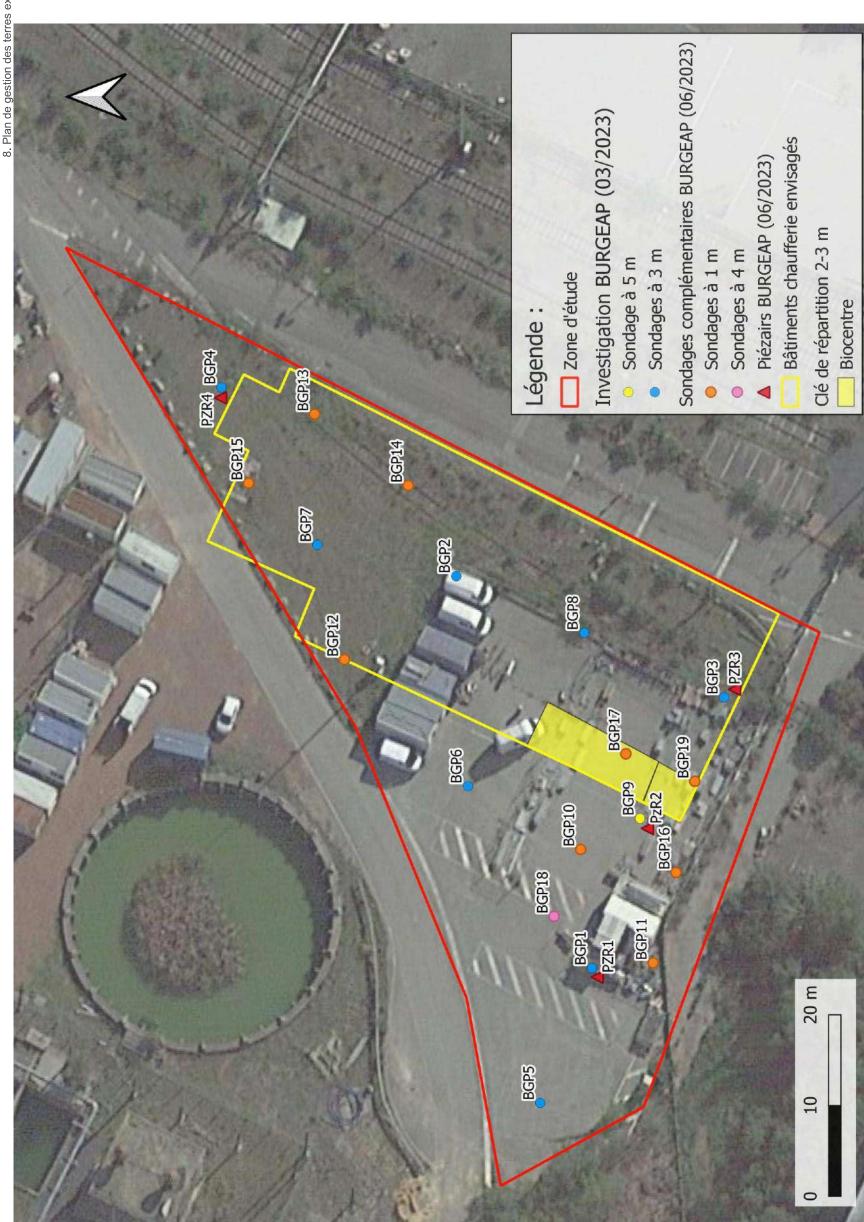


Figure 18 : Plan de terrassement entre 2 et 3 m de profondeur

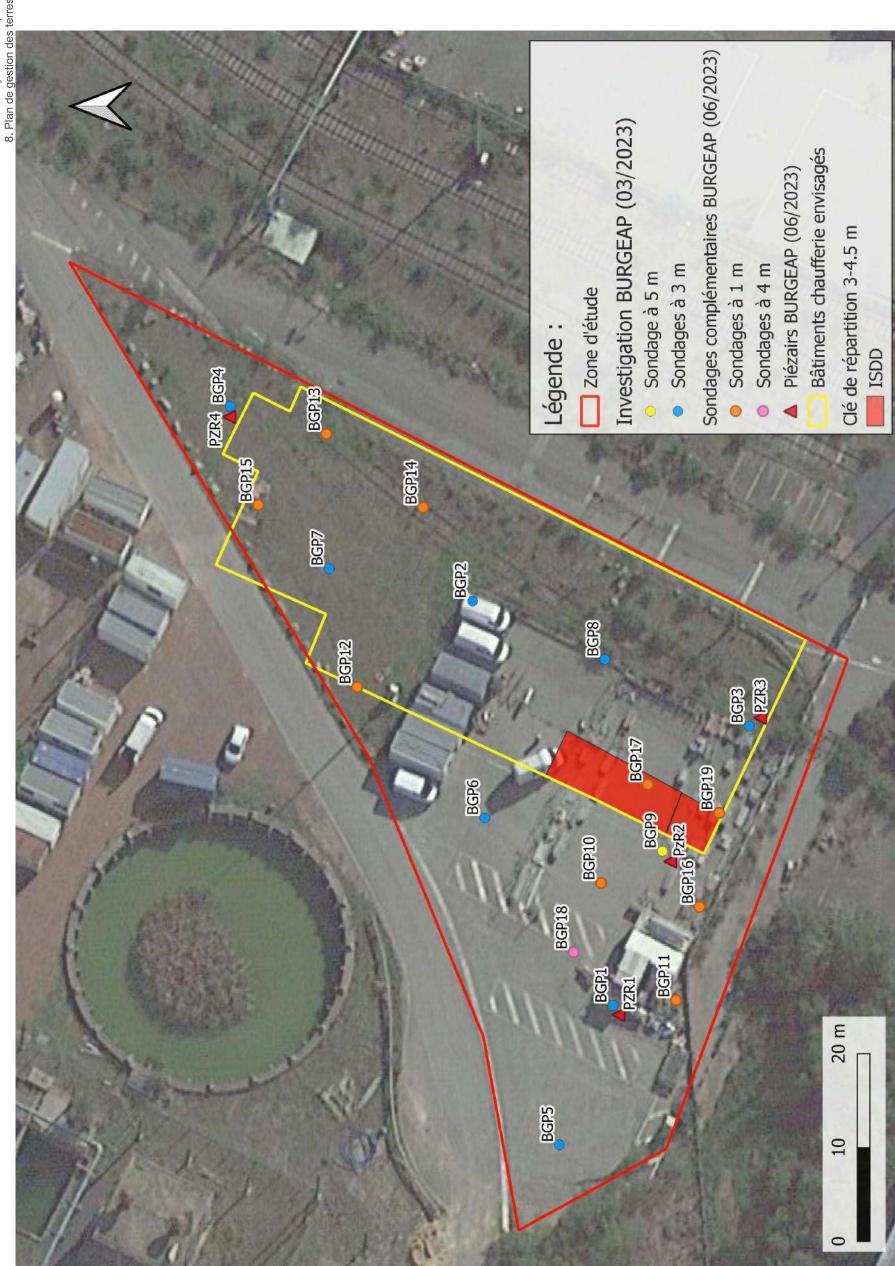


Figure 19: Plan de terrassement entre 3 et 4,5 m de profondeur

Cela prends en compte le cas le plus défavorable où l'ensemble des structures

de voiries seraient à reprendre. Si les

Ainsi, dans le cadre de l'aménagement de la future chaudière biomasse, sur la base des hypothèses transmises par ENGIE, les volumes prévisionnels par filière d'évacuation hors site sont présentés dans le **Tableau 14**.

ISDI + **B2** (filière A1 R1 (biotraitem C (ISDD ou (ISDND ou (terres spécifique à ent ou équivalent) inertes, ISDI) seuils équivalent) équivalent) réhaussés) Volume en m3 1135 358 1351 657 1428 4927 Total

Tableau 14 : Synthèse des volumes excavés par filière

8.5 Gestion des terres excavées

Dans le cadre de la gestion des déblais générés par les travaux d'am structures sont acceptables, quelles future chaufferie biomasse, ENGIE souhaite envisager 2 solutions de seraient la moins-value?

- Elimination hors site de l'ensemble des terres excavées ;
- Mise en œuvre d'un confinement étanche (encapsulation) des matériaux non inertes.

8.5.1 Estimation des coûts liés à l'évacuation hors site des terres excavées (hors valorisation)

Concernant les filières d'élimination, elles sont déterminées par comparaison entre les concentrations mesurées dans les sols et les concentrations définies par l'arrêté du 12 décembre 2014 relatif aux conditions d'admission des déchets inertes dans les installations relevant des rubriques 2515, 2516, 2517 et des installations de stockage de déchets inertes relevant de la rubrique 2760 de la nomenclature des installations classées.

Sur ces bases, les filières d'élimination identifiées envisageables sont les suivantes :

- A1 : Installation de Stockage des Déchets Inertes (désignée « ISDI ») ;
- ISDI + : ISDI aménagée (ISDI qui acceptent des dépassements sur éluat d'un facteur 3 par rapport aux valeurs limites définies par l'arrêté ministériel du 12/12/2014) ;
- B1 : Installation de Stockage des Déchets Non Inertes (désignée « ISDND ») ;
- B2 : Biocentre ;
- C: Installation de Stockage des Déchets dangereux (désignée « ISDD »).

A noter que:

- Chaque installation possède des critères d'acceptation qui lui sont propres, fixés par arrêté préfectoral. De plus, chaque installation se réserve le droit de refuser toute terre présentant un aspect douteux (odeur, couleur texture, etc.). Par conséquent, la simple présence d'odeurs, de couleurs jugées suspectes ou de déchets anthropiques peut être un critère de refus dans certaines installations, même si les terres sont, d'après les analyses de laboratoire, conformes aux critères d'acceptation de la filière.
- Il sera de la responsabilité de l'Entreprise en charge des travaux d'évacuation des terres de consulter les filières pouvant prendre en charge les déblais sur la base de toutes les données disponibles à la date de la demande, d'obtenir un certificat d'acceptation préalable (CAP) et de réaliser tout contrôle

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 50/127

complémentaire de qualité des terres. Il est ainsi recommandé qu'une maîtrise d'œuvre ou assistance à maîtrise d'ouvrage spécialisée valide les exutoires présentés et justificatifs associés, afin d'assurer pour le compte du maître d'ouvrage la vérification du respect de la réglementation et de la traçabilité des évacuations.

Tableau 15 : Synthèse des coûts d'évacuation hors site par catégorie

	A1 (terres inertes, ISDI)	14	€ /t
	ISDI + (ISDI aménagée)	20	€ /t
Coûts	B1 (ISDND ou équivalent)	95	€ /t
	B2 (biotraitement ou équivalent)	85	€ /t
	C (ISDD ou équivalent)	170	€ /t

A noter:

- Ces coûts correspondent au transport et prise en charge des terres en installation de stockage ou de traitement, hors coûts de terrassements/chargements. Ils n'incluent pas les coûts d'excavation/tri des terres, de mise en sécurité des fouilles, les coûts liés à la protection des travailleurs, les coûts de maitrise d'œuvre et de contrôle extérieur.
- Ils sont sujets à variations liées d'une part aux conditions du marché et au d'autre part aux variations de la TGAP. Ils sont donc valables à la date de l'établissement du présent rapport.

 Réf : NO3700187 / 1040141-02
 JGRO / SEP
 25/08/2023
 Page 51/127

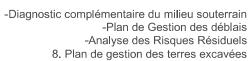


Tableau 16 : Estimatif des volumes et des sur<u>coûts</u>

						Répartitio	n des tranci	ies de sols p	ar catégorie	ė						Estimation	des coûts	d'éliminati	on hors s	ite	
Cubature de	es terres in	ıpactées	A (terres ine		ISU (filière sp			n équivalent)	B2 (biotra équiv	itement ou alent)	C (ISDD ou	équivalent)		19	SDI +	(ISD	1 ND ou alent)	B2 (biotra ou équiv			DD ou alent)
Aménagement	Points de sondages	Surperficie (m² environ)	Niveau supérieur	Niveau Inférieur	Niveau supérieur	Niveau inférieur	Niveau supérieur	Niveau Inférieur	Niveau supérieur	Niveau Inférieur	Niveau supéneur	Niveau Inférieur			euro / m³	95.00	euro / t	85.00	euro / t	170.00	euro /t
			77		Terre	s à ex	caver	et à é	vacue	er pou	ır la re	éalisat	ion du proje	Ì	3						
Zone des Bennes	BGP4	81					0	0.5							0	6.5	900	0	2		O
Chaufferie	BGP13 BGP 15 BGP 7 BGP 12 BGP 14 BGP 2	110 70 90 30 130 250	0	0.5	0	0.5					0 0 0 0	0.5 0.5 0.5 0.5		- 2	0 0 0 0 0		0 0 0 0 0	0 0 0 0		13 4.5	830 710 770 590 0
Echelles + Verrins	BGP 8	200			0.	0.5							1.	-	500	1	0	0			0
	BGP 6 BGP 8	72 150	0	0.5	ū	0.5							Y		0 630		0	0			0
Stockage passif	BGP 3	200				3202			0	0.5					0		0	15 3	00	(
Locaux techniques	BGP 12	68									0	0.5			D		0	0		10	400
	BGP 2 BGP 17	70 120	0	1	0	0.5			1	3	3	4,5		1	0		0	0 36.7			080
Déchargement	BGP19	80					0	1	1	3	3	4.5			0	S conse	700	24 5	-0.0	100000	720
Convoyeur	BGP 8	17			0	0.5								1	300		0	0		1	Ó
-	BGP1	105									0	0.8			Ö		0	0		25	700
	BGP3	110							0	0.8					D		Ö	13 5	00	,	į
	BGP5 BGP6	332 390	0	0.8											0		0	0			0
	BGP9 BGP10	40 35	0	0.8	0	0.4	0.4	0.8							0 490		0	0			0
	BGP11	110	0	0.4	, u	0.4	0.4	0.0		7	0.4	0.8			0		0	0			460
spaces Extérieurs / Voiries	BGP12	35									0	0.8			0		0	.0		8 5	570
	BGP16	B5			rc s			5	8		,0	0.8	h		0		0	0		20	810
	BGP18	86							0	0.8					0		0	105	00		0
	BGP4	170					0	8.0							D	23	300	0		i	ĺ
	Compléments emprise foncière	1350			8 8		0	0.8							0	184	700	0			Ó
fondation profonde															0		0	0		159	120
Massif cheminée								7							0		0	0		30	600
Tranchées divers													9 I		0		0	0		30	600
													Total surcoûts d'évacuation des terres non inertes	1	2 500	231	000	100 5	600	437	000
													Total avec marge pour incertitudes 20%	1	5 000	277	200	120 (500	524	400

Dans le cadre de l'hypothèse retenue, un volume de terres <u>en place</u> menées à être excavées de l'ordre de 4 930 m³ environ pour l'ensemble des travaux représente un <u>coût</u> pour la gestion des matériaux non inertes entre 780 et 940 k€ H.T environ.

8.5.2 Estimation des coûts de traitement des matériaux non inertes par encapsulation

8.5.2.1 Méthodologie

L'emprise, la hauteur, le modelé et les diverses contraintes techniques de mises en œuvre de l'encapsulage seront à définir par ENGIE.

Il convient également de prendre en considération que la zone choisie pour la mise en œuvre du confinement par encapsulation devra être « sanctuarisée » et fera l'objet d'une servitude.

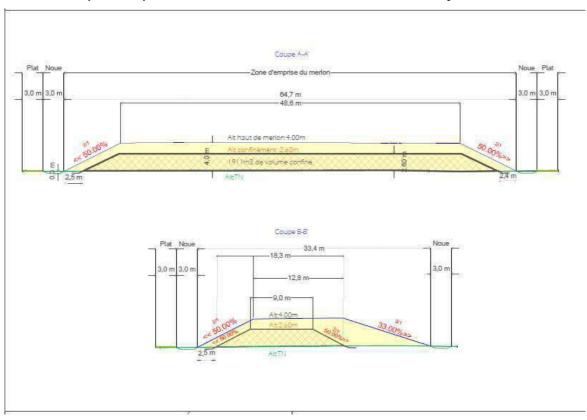


Figure 20 : Exemple de mise en œuvre d'encapsulation

La mise en œuvre de l'encapsulation devra se faire de la manière suivante :

- Assemblage de la zone d'encapsulation : superposition de lés de géotextile anti-poinçonnement puis une couche de géomembrane étanche. L'étanchéité sera réalisée sur la géomembrane par soudure ;
- La circulation de tout véhicule sur les composants sera interdite.
 - De même, les opérations de manutention seront limitées à leur strict minimum pour éviter la détérioration de la structure en place.
- Lestage : les géosynthétiques devront être lestés provisoirement à l'aide de sacs de sable en fonction des vents prévisibles. Le lestage devra rester en place jusqu'au recouvrement de la couche suivante.
- Contrôle des soudures : après étalonnage des machines de soudure et réalisation d'essais destructifs (à chaque prise de poste), un contrôle systématique des soudures devra être réalisé :
 - Contrôle visuel des soudures à la pointe émoussée au niveau des points singuliers,
 - Mise en pression du canal central sur toutes les soudures double canal,
 - Contrôle à la cloche à vide au niveau de toutes les extrusions.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 53/127

Après mise en œuvre de la géomembrane de couverture, il conviendra de mettre en œuvre :

- Un géocomposite de drainage des eaux pluviales sur le dôme et les talus ;
- Un accroche terre au niveau des talus ;
- Un recouvrement par 30 cm de terres d'apport saines après compactage afin de couper toutes voies de transfert et l'intégration paysagère;
- Un engazonnement, 1ère tonte et regarnissage si nécessaire.

Enfin, il faudra impérativement :

- Réaliser une note de calcul de dimensionnement des tranchées d'ancrage pour la zone d'encapsulation;
- Réaliser une note de calcul de dimensionnement des noues d'infiltrations des eaux de ruissellement pluviales le long du merlon de confinement ;
- Des habilitations ASQUAL de l'entreprise en charge de la réalisation du confinement (pose et soudure des géosynthétiques).

8.5.2.2 Estimation des coûts de mise en œuvre d'un confinement par encapsulation

Nous considèrerons ici que seuls les matériaux non inertes seront mis en confinement sur site, soit un volume d'environ 3 800 m³ en place, 4 750 m³ foisonné (25% de foisonnement).

L'estimation de coûts présentée ci-dessous est basé sur les hypothèses suivantes :

- Environ 2 000 m² d'emprise au sol de la zone d'encapsulation ;
- Hauteur du merlon d'environ 3 m;
- Talutage de la zone de confinement en 1 / 1.

En complément si zone plus étendue je suppose? Quel impact si répartition en 2 zones?

Une modification de ces hypothèses (agrandissement de l'emprise et hauteur moins importante, par exemple) aura des incidences sur les coûts.

Tableau 17 : Synthèse des coûts de gestion des matériaux non inertes par encapsulation

Poste	Quantité	Unité	Prix U €HT	Prix k€ HT			
Gestion des déchets non inertes							
Traitement sur site par confinement ou encapsulation	4 750	m3	45	213	213 750		
TOTAL gestion des déchets non inertes par encapsulation					213 750		
Ingénierie des travaux							
Aléa	10	%	-	20 000			
TOTAL y compris alea de 10 %							

Les surcoûts de gestion des matériaux non inertes par encapsulation sont estimés entre 215 et 235 k€.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 54/127

8.6 Synthèse des surcoûts de gestion des matériaux non inertes

En synthèse, le **Tableau 18** présente les surcoûts de gestion des matériaux non inertes suivant les 2 scénarios envisagés.

Tableau 18 : Synthèse des coûts de gestion des matériaux non inertes

	Hypothèse basse	Hypothèse haute
Scénario 1 : Elimination hors site des matériaux non inertes	780 k€	940 k€
Scénario 2 : Confinement sur site des matériaux non inertes	215 k€	235 k€

8.7 Préconisations spécifiques pour les travaux de terrassement des terres excavées

8.7.1 Opérations préalables

Les opérations préalables comprennent :

- La gestion administrative des travaux ;
- L'installation et la préparation du chantier ;
- Le piquetage des mailles impactées selon le plan de maillage présenté en Figure 14;
- Dans le cas où la technique par encapsulation était retenue, il conviendra de fournir préalablement à la réalisation des travaux :
 - Une note de calcul de dimensionnement des tranchées d'ancrage pour la zone d'encapsulation ;
 - Une note de calcul de dimensionnement des noues d'infiltrations des eaux de ruissellement pluviales le long du merlon de confinement;
 - Les habilitations ASQUAL de l'entreprise en charge de la réalisation du confinement (pose et soudure des géosynthétiques).

8.7.2 Descriptif des travaux

L'ensemble des travaux suivra la même méthodologie et comprendra après piquetage du maillage :

- Une phase de terrassement pleine masse par maille ;
- La mise en stockage provisoire par classe de matériaux avant évacuation ou mise en confinement suivant la technique de traitement envisagée par ENGIE ;
- Dans le cas où la technique par confinement / encapsulation était retenue, les travaux suivants devront être réalisés :
 - assemblage de la zone d'encapsulation : superposition de lés de géotextile anti-poinçonnement puis une couche de géomembrane étanche. L'étanchéité sera réalisée sur la géomembrane par soudure :
 - la circulation de tout véhicule sur les composants sera interdite.
 - de même, les opérations de manutention seront limitées à leur strict minimum pour éviter la détérioration de la structure en place.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 55/127

- Lestage : les géosynthétiques devront être lestés provisoirement à l'aide de sacs de sable en fonction des vents prévisibles. Le lestage devra rester en place jusqu'au recouvrement de la couche suivante.
- Contrôle des soudures : après étalonnage des machines de soudure et réalisation d'essais destructifs (à chaque prise de poste), un contrôle systématique des soudures devra être réalisé.

8.7.3 Traçabilité

Dans le cas où les terres excavées venaient à être éliminées hors site, leur traçabilité devra être assurée par :

- La tenue d'un registre chronologique de suivi de la production des volumes par lots et classification de matériaux, de leur expédition (date, exutoire) et de la réception (en installation de stockage ou en réemploi), Les BSD (bordeaux de suivi de déchets pour les déchets non dangereux et dangereux) seront par ailleurs établis et seront intégrés au registre.
 - L'utilisation du site Track déchets pour le suivi des évacuations hors site, conformément au décret n°2021-321 du 25/03/2021 relatif à « la traçabilité des déchets, des terres excavées et des sédiments » ;
- Ce registre sera conservé pendant au moins trois ans et devra permettre d'identifier précisément la destination ou le lieu de valorisation des terres excavées.

Dans le cas où les matériaux venaient à être confinés sur site par encapsulation, une traçabilité des volumes de matériaux mis en confinement devra également être réalisée.

8.7.4 Opérations après travaux

A l'issue des travaux de terrassement, un dossier de récolement / fin de travaux devra être établi. Ce dossier comprendra à minima les éléments suivants :

- Le détail des opérations réalisées (plan de récolement des travaux, implantation des excavations, ouvrages exécutés, etc.);
- Le descriptif technique des travaux et le bilan récapitulatif des matériaux et polluants extraits : terres et déchets expédiés, volumes d'eau traitée...;
- Les bordereaux de suivi de déchets, le cas échéant ;
- Le plan de récolement final de la zone de confinement par encapsulation, le cas échéant ;
- Les comptes rendus des contrôles sur les différents milieux (fiches de prélèvement, bulletins analytiques, localisation précise des prélèvements de contrôle...);
- Les résultats du suivi environnemental le cas échéant ;
- La mise à jour de l'analyse des risques résiduels.

8.7.5 Mesures de protection des travailleurs

Lors des excavations, des mesures de protection des travailleurs devront être assurées afin d'éviter le contact direct et l'ingestion de poussière en provenance des matériaux impactés, notamment lié à la présence de cyanure à des concentration significatives.

Le strict respect des consignes minimales et habituelles d'hygiène et sécurité du domaine du BTP (cf. document de l'OPPBTP « Interventions sur sols pollués – prévention du risque chimique » et celles du PGC qui aura été établi par le coordonnateur SPS devra être assuré.

En cas d'envol de poussière important, il pourra être envisagé un système d'aspersion / brumisation.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 56/127

Les recommandations en termes d'équipements de protection individuelle (EPI) seront également à prévoir, comme par exemple :

- Le port de vêtements de travail à usage unique ;
- Le port d'un casque de chantier ;
- Le port des chaussures ou bottes de sécurité;
- Le port de gants de manutention ;
- Le port d'un masque à poussière ;
- Le port d'un détecteur 4 gaz et d'un explosimètre.

8.7.6 Limitations des nuisances

Il conviendra de limiter les nuisances que pourraient occasionner les travaux de terrassement sur l'environnement et envers les riverains.

Ainsi, les mesures suivantes seront mises en place lors de la réalisation des travaux de terrassement :

- Nettoyage régulier des éventuelles salissures sur la voirie afin d'éviter la dispersion des polluants;
- Limitation des nuisances au voisinage concernant les poussières et les odeurs :
- Bâchage des camions après chargement des terres ;
- Arrosage des pistes de circulation afin d'éviter l'envol de poussières par temps sec ;
- Limitation des émissions de polluants vers les sites riverains.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 57/127

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 9. Conceptualisation de l'exposition

9. Conceptualisation de l'exposition

Le schéma conceptuel est présenté de façon à visualiser :

- la ou les sources de pollution,
- les voies de transfert possibles,
- · les milieux d'exposition.
- les cibles potentielles,

Il est présenté et discuté dans les paragraphes suivants.

Le schéma conceptuel mis à jour à l'issue du diagnostic environnemental du site et pour les usages futurs envisagés est présenté sur la **Figure 21**.

9.1 Géologie et hydrogéologie

Au regard des observations réalisées au cours des investigations et notre connaissance de la géologie locale, la succession des formations géologiques au droit du site est la suivante (sous un recouvrement minéral de type enrobé ou béton) :

- Remblais entre 0 et 1 m de profondeur ;
- Limons argileux jusqu'environ 2 m de profondeur ;
- Craie du Sénonien.

La nappe de la craie est attendue entre 4 et 5 m de profondeur et s'écoule vers le nord-est.

9.2 Synthèse des impacts résiduels dans les différents milieux

Les impacts mis en évidence au droit du site sont présentés au paragraphe 7.1.

9.3 L'usage des milieux

Même remarque que précédemment, à mettre à jour avec la nouvelle implantation qui n'est plus en L

9.3.1 Projet d'aménagement/usage pris en compte/environn

Le projet d'aménagement qui nous a été communiqué par le maitre d'ouvrage en date du 20/06/2023 prévoit :

- La construction d'une chaudière biomasse en forme de L dans la partie sud de la zone d'étude ;
 - Des voiries de circulation pour véhicules lourds sur le reste du site.

Une fosse de dépotage sera présente et terrassée jusque 4,5 m de profondeur par rapport au terrain actuel.

9.3.2 Enjeux/cibles à considérer

Les enjeux à considérer sur site sont les futurs usagers du site (futurs travailleurs).

Aucun enjeu hors site n'est considéré dans la présente étude.

9.4 Voies de transferts depuis les milieux impactés vers les milieux d'exposition

Au droit des zones recouvertes par des bâtiments ou un revêtement spécifique, la voie de transfert à considérer est la volatilisation des composés volatils.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 58/127

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 9. Conceptualisation de l'exposition

L'ensemble du site sera recouvert et les canalisations d'abduction d'eau potable devront être en matériaux anti-perméation.

9.5 Voies d'exposition

9,5,1 Sur site

Au droit des zones recouvertes, la seule voie d'exposition à considérer est l'inhalation de composés volatils issus du milieu souterrain.

La sélection des voies d'exposition ainsi que l'argumentaire de cette sélection sont présentés dans le **Tableau 19**.

Tableau 19: Voies d'exposition retenues

	Chaufferie biomasse			
Voies d'exposition	Adultes travailleurs	Raison de la sélection		
Inhalation de polluant sous forme gazeuse	Oui	Du fait de la présence de composés volatils dans les sols / gaz du sol		
Inhalation de polluant adsorbé sur les poussières du sol	Non	En raison de la couverture des sols (dallage, bâtiments), l'inhalation de poussières ne peut plus se produire		
Inhalation de vapeur d'eau polluée*	Non	Les conduites AEP seront mises en place dans des sablons propres et seront en matériaux antiperméation		
Ingestion directe de sol et/ou de poussières	Non	En raison de la couverture des sols (dallage, bâtiments), l'inhalation de poussières ne peut plus se produire		
Ingestion d'aliments d'origine végétale cultivés sur ou à proximité du site	Non	Absence de culture actuellement et dans le futur sur site ou dans le voisinage		
Ingestion d'aliments d'origine animale à partir d'animaux élevées ou pêchés à proximité du site	Non	Absence d'élevages actuellement et dans le futur sur site ou dans le voisinage		
Ingestion d'eau contaminée	Non	Les conduites AEP seront mises en place dans des sablons propres et seront en matériaux anti- perméation		
Absorption cutanée de sols et/ou de poussières	Non	Absence de relations dose-réponse dans la littérature scientifique**		
Absorption cutanée d'eau contaminée (bain, douche, baignade en gravière)	Non	Absence de relations dose-réponse dans la littérature scientifique**		
Absorption cutanée de polluant sous forme gazeuse	Non	Voie d'exposition négligeable devant la voie inhalation de vapeur. Absence de relations dose-réponse dans la littérature scientifique		

^{*} voie d'exposition considérée par la comparaison entre les concentrations dans les eaux utilisées et les concentrations maximales admissibles dans les eaux potables (voir paragraphe des investigations sur les eaux souterraines).

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 59/127

^{**} Les expositions par contact cutané avec les sols ne sont pas considérées dans la présente étude compte tenu de l'absence de valeur toxicologique de référence pour cette voie d'exposition. En effet, comme cela est préconisé dans la note d'information N° DGS/EA1/DGPR/2014/307 du 31 octobre 2014, en l'absence de connaissance des effets potentiels des substances étudiées par voie cutanée, la transposition de la valeur toxicologique établie par voie orale n'est pas effectuée

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 9. Conceptualisation de l'exposition

9.5.2 Hors site

Aucun enjeu hors site n'est retenu dans la présente étude.

ENGIE SOLUTIONS

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 9. Conceptualisation de l'exposition

Schéma conceptuel 9.6

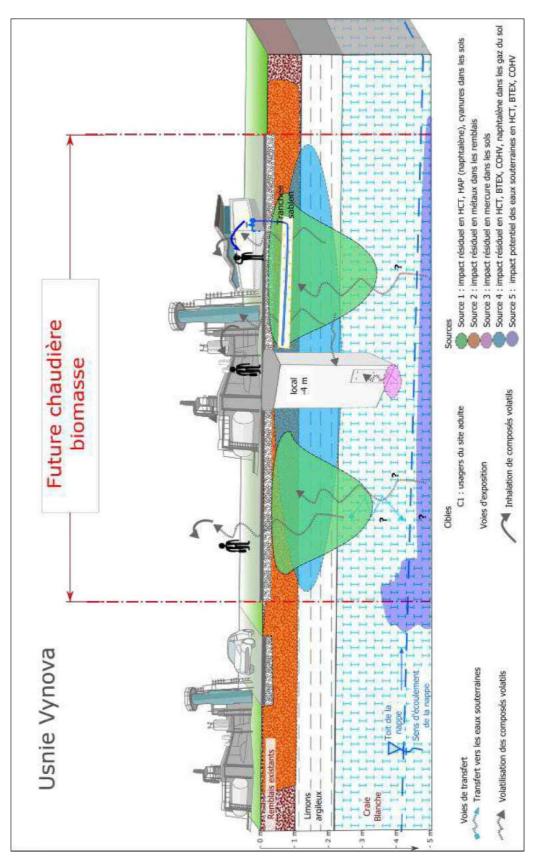


Figure 21 : Mise à jour du schéma conceptuel après mesures de gestion simples

10. Analyse des Risques Résiduels (ARR)

10.1 Contexte et méthodologie

Conformément aux textes ministériels relatifs à la gestion des sites et sols pollués de 2017, la compatibilité entre l'état attendu des terrains après mise en œuvre des mesures de gestion proposées et l'usage futur du site doit être vérifiée sur le plan sanitaire.

L'analyse des risques résiduels (ARR) consiste donc à vérifier que l'état des milieux à l'issue des travaux (concentrations résiduelles dans les sols) est compatible avec les usages futurs.

L'ARR qui repose sur le schéma conceptuel final peut être réalisée :

- a priori (avant la réalisation des travaux de réhabilitation ou « ARR prédictive »). Les calculs de risque sont menés sur des concentrations résiduelles estimées en tenant compte des performances connues des techniques de dépollution. Dans ce cas, lors du récolement à l'issue des travaux, les concentrations résiduelles mesurées et les caractéristiques des aménagements prévus seront comparées aux données d'entrée de la présente ARR afin de statuer sur la bonne mise en œuvre du plan de gestion. Une ARR prédictive apporte une certaine garantie sur l'acceptabilité sanitaire mais ne remplace pas celle réalisée à l'issue des travaux de réhabilitation;
- a posteriori (à réception des travaux de réhabilitation ou « ARR fin de travaux »). Dans ce cas, à l'issue des travaux, les concentrations résiduelles mesurées lors du récolement et les caractéristiques des aménagements prévus sont intégrées à l'ARR afin de statuer sur la compatibilité entre les pollutions résiduelles et les usages.

L'ARR est ici réalisée a priori, avant les travaux de réhabilitation, en considérant les teneurs mesurées dans les terrains qui resteront en place au droit du site.

La méthodologie appliquée est conduite en 4 étapes :

- Étape 1 : Identification des dangers
- Étape 2 : Caractérisation des relations dose-réponse
- Étape 3 : Estimation des expositions
- Étape 4 : Caractérisation des risques

Cette méthodologie nécessite l'étape préalable de choix justifié et raisonné des composés et concentrations à prendre en compte.

10.2 Composés et concentrations retenues dans les différents milieux

La synthèse des investigations sur le site, combinée aux scénarios d'expositions retenus, permet de réaliser la sélection des composés à prendre en compte pour les milieux d'exposition considérés.

La seule voie d'exposition retenue est l'inhalation de composés volatils. Les concentrations mesurées dans les gaz du sol ont donc préférentiellement été retenues par rapport aux concentrations sols (diminution des incertitudes liées à la modélisation des transferts). Dans une approche majorante, les concentrations maximales sont retenues.

Les concentrations retenues sont présentées dans le Tableau 20.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 62/127

Tableau 20 : Concentrations retenues dans les différents milieux pour l'ARR

		à la source retenues e batiment		ations à la source en extérieur
Substances	Investigations Gaz du sol correspondantes et critères de sélection		Gaz du sol	Investigations correspondantes et critères de sélection
	mg/m ³		mg/m ³	
METAUX ET METALLOIDES				
Mercure (Hg)	2.90E-04	PzR2	2.90E-04	PzR2
HYDROCARBURES AROMATIQUES POLYCYCLIQUES				
Naphtalène	6.70E-03	PzR3	6.70E-03	PzR3
COMPOSES AROMATIQUES	0.7 0E-03	1 21/3	0.70E-03	1 210
MONOCYCLIQUES				
benzène	6.70E-02	PzR1	6.70E-02	PzR1
toluène	2.70E-02	PzR2	2.70E-02	PzR2
ethylbenzène	6.40E-03	PzR3	6.40E-03	
M+p-Xylène	3.30E-02	PzR3	3.30E-02	PzR3
o-Xylène	1.10E-02	PzR3	1.10E-02	PzR3
HYDROCARBURES SUIVANT LES TPH				
Aliphatic nC>6-nC8	1.30E-01	PzR 1	4.40E-01	PzR 1
Aliphatic nC>8-nC10	7.50E-01	PzR 1	7.50E-01	PzR 1
Aliphatic nC>10-nC12	4.70E-01	PzR 1	4.70E-01	PzR 1
Aliphatic nC>12-nC16	9,20E-02	PzR 1	9,20E-02	PzR 1
Aromatic nC>8-nC10	1.30E-01	PzR 3	1.30E-01	PzR 3
COMPOSES ORGANO-HALOGENES VOLATILS				
tétrachloroéthylène (PCE)	1.30E-02	PzR 3	1.30E-02	PzR 3
trichloroéthylène (TCE)	2.20E-03	PzR 2	2.20E-03	PzR 2
1,1 dichloroéthylène (1,1 DCE)	4.70E-02	PzR 1	4.70E-02	PzR 1
chlorure de vinyle (VC)	7.10E-02	PzR 1	7.10E-02	PzR 1
1,1,1 trichloroéthane	1.30E-01	PzR 2	1.30E-01	PzR 2
1,2 dichloroéthane	9.00E-01	PzR 1	9.00E-01	PzR 1
1,1 dichloroéthane	5.60E-03	PzR 2	5.60E-03	PzR 2
Tétrachlorométhane (CCI4)	6.10E-03	PzR 2	6.10E-03	PzR 2
chloroforme (TCmA)	3.60E-02	PzR 4	3.60E-02	PzR 4

Réf : NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 63/127

10.3 Identification des dangers

En termes sanitaires, un danger désigne tout effet toxique, c'est-à-dire un dysfonctionnement cellulaire ou organique lié à l'interaction entre un organisme vivant et un agent chimique, physique ou biologique. La toxicité d'un composé dépend de la durée et de la voie d'exposition de l'organisme humain. Différents effets toxiques peuvent être considérés.

Pour les substances prises en compte dans le cadre de cette évaluation, les effets toxiques ont été collectés et notamment les effets cancérigènes (apparition de tumeurs), les effets mutagènes (altération du patrimoine génétique) ainsi que les effets sur la reproduction (reprotoxicité).

En ce qui concerne le potentiel cancérogène, différents organismes internationaux (l'OMS, l'Union Européenne et l'US-EPA) distinguent différentes catégories ou classes. Seule la classification de l'Union Européenne a un caractère réglementaire. C'est également la seule qui classe les substances chimiques quant à leur caractère mutagène et reprotoxique.

L'ensemble des voies d'exposition a été traité en effets chroniques, correspondant à de longues durées d'exposition (supérieures à 7 ans pour l'US-EPA et supérieures à 1 an pour l'ATSDR).

L'ensemble des informations concernant le potentiel toxique des substances retenues est reporté en Annexe 8.

10.4 Caractérisation des Relation dose-réponse

L'évaluation quantitative de la relation entre la dose (ou la concentration) et l'incidence de l'effet néfaste permet d'élaborer la **Valeur Toxicologique de Référence** (VTR). Des VTR sont établies par diverses instances internationales ou nationales² à partir de l'analyse des données toxicologiques expérimentales chez l'animal et/ou des données épidémiologiques. Ces VTR sont une appellation générique regroupant tous les types d'indices toxicologiques établissant une relation quantitative entre une dose et un effet (toxiques à seuil de dose) ou entre une dose et une probabilité d'effet (toxiques sans seuil de dose).

Selon les mécanismes toxicologiques en jeu, deux grands types d'effets toxiques peuvent être distingués :

- Les effets à seuil pour lesquels il existe un seuil d'exposition en dessous duquel l'effet néfaste n'est pas susceptible de se manifester,
- Les effets sans seuil pour lesquels la probabilité de survenue de l'effet néfaste croît avec l'augmentation de la dose.

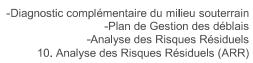
La note d'information N° DGS/EA1/DGPR/2014/307 du 31 octobre 2014 relative aux modalités de sélection des substances chimiques et de choix des valeurs toxicologiques de référence pour mener les évaluations des risques sanitaires dans le cadre des études d'impact et de la gestion des sites et sols pollués est prise en compte pour la sélection des VTR.

Les valeurs toxicologiques de référence sont synthétisées dans le **Tableau 21**. Les relations dose-réponse des composés retenus sont détaillées en **Annexe 9** et discutées dans les incertitudes au paragraphe **10.7**.

ATSDR Toxicological Profiles (US Agency for Toxic Substances and Disease Registry)

OMS (Organisation Mondiale de la Santé)

Santé canada (Ministère Fédéral de la Santé - Canada),


RIVM (RijksInstituut voor Volksgezondheid en Milieu – Institut National de Santé Publique et de l'Environnement – Pays Bas),

OEHHA (Office of Environmental Health Hazard Assessment of California – Etats-Unis)

En France, l'ANSES (Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement, du Travail) peut également produire des VTR.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 64/127

 $^{^2\,\}mbox{IRIS}$ US-EPA (Integrated Risk Information System ; US Environmental Protection Agency)

Tableau 21 : Valeurs toxicologiques de référence retenues

		Effets sans seuil				
Substance	CAS N°	ERUi	TYPE CANCER	SOURCE		
		(μg/m³) ⁻¹				
METAUX ET METALLOIDES						
Mercure (Hg)	multiple	-	-	-		
HYDROCARBURES AROMATIQUES POLYCYCLIQUES	;					
Naphtalène	91-20-3	5.6E-06	neuroblastome de l'épit, olfactif	Anses, 2013		
COMPOSES AROMATIQUES MONO	OCYCLIQUES					
benzène	71-43-2	2.6E-05	leucémie	Anses, 2013		
toluène	108-88-3	-	-	-		
ethylbenzène	100-41-4	-	-	-		
M+p-Xylène	1320-20-7	-	-	-		
o-Xylène	95-47-6	-	-	-		
HYDROCARBURES SUIVANT LES 1	РН					
Aliphatic nC>6-nC8	non adéquat	_	_	_		
Aliphatic nC>8-nC10	non adéquat	-	-	-		
Aliphatic nC>10-nC12	non adéquat	-	-	-		
Aliphatic nC>12-nC16	non adéquat	_	_	-		
Aromatic nC>8-nC10	non adéquat	_	-	-		
COMPOSES ORGANO-HALOGENE	S VOLATILS					
tétrachloroéthylène (PCE)	127-18-4	2.6E-07	hépatique	US-EPA, 2012 retenu par Anses, 2018		
trichloroéthylène (TCE)	79-01-6	1.0E-06	cancer du rein	Anses, 2018		
1,1 dichloroéthylène (1,1 DCE)	75-35-4	-	-	-		
chlorure de vinyle (VC)	75-01-4	3.8E-06	Tumeurs hépatiques	Anses, 2012		
1,1,1 trichloroéthane	71-55-6	-	-	-		
1,2 dichloroéthane	107-06-2	3.4E-06	glandes mammaires	ANSES 2008		
1,1 dichloroéthane	75-34-3	1,6E-06	glandes mammaires	ОЕННА 2011		
Tétrachlorométhane (CCl4)	56-23-5	-	-	-		
chloroforme (TCmA)	67-66-3	_	_	_		

		Effe	ts à seuil		
VTRi	ORGANE	SOURCE	VTRi spécifique effet cancérigène	ORGANE	SOURCE
(µg/m³)			(µg/m³)		
0.2	SNC	OMS-CICAD 2003	-	-	-
37	sys. Resp.	Anses, 2013	-	-	-
10	sang	Anses, 2008	-	-	-
19 000	syst. Nerveux	Anses, 2017	-	-	-
1 500	effet ototoxique	ANSES 2016	-	-	-
100	syst. Nerveux	US EPA 2003 retenu par Anses, 2020	-	-	-
100	syst. Nerveux	US EPA 2003 retenu par Anses, 2020	-	-	-
3 000	syst. nerveux	Anses, 2014	-	-	-
1 000	syst. Hépatique	TPHCWG, 1997	-	-	-
1 000	syst. Hépatique	TPHCWG, 1997	-	-	-
1 000	syst. Hépatique	TPHCWG, 1997	-	-	-
200	poids	TPHCWG, 1997	-	-	-
400	neurotoxicité	Anses, 2018	-	1	-
3 200	rein	Anses, 2018	-	-	-
200	hépatique	US-EPA, 2002	-	-	-
100	hépatique	US-EPA, 2000	<u>-</u>	-	<u>-</u>
1 000	syst. nerveux	OEHHA, 2004 retenu par INERIS, 2014	-	-	-
3 000	hépatique	ATSDR, 2001	-	-	-
-	-	-	-	-	-
100	hépatique	US-EPA, 2010	110	cancer hépatique	ANSES, 2018
·	hépatique	ATSDR,	63	cancer rénal	ANSES,

10.5 Estimation des expositions

10.5.1 Concentrations dans l'air intérieur et dans l'air extérieur

La modélisation des transferts des gaz des sols vers <u>l'air intérieur</u> est associée au développement d'outils datant du début des années 1990. Ces outils sont très peu nombreux, les principaux utilisés en France qui intègrent le transport diffusif et le transport convectif sont VOLASOIL [3] (Waitz et al, 1996) adapté aux situations avec vide sanitaire, le modèle dit de « Johnson and Ettinger »^[4] (Johnson and Ettinger, 1991) adapté aux constructions en dallage indépendant (avec fissuration périphérique de la dalle liée au séchage) et le modèle développé par Bakker et al (2008)^[5] pour les constructions en dalle portée ou radier (fondation et dalle d'un seul tenant, sans fissuration périphérique).

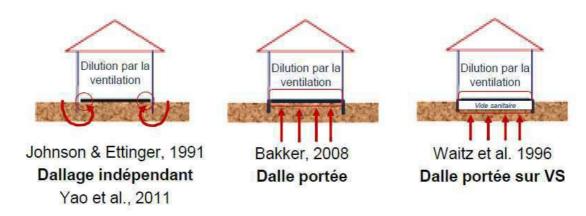


Figure 22 : Représentation schématique des différents modèles de calcul des transferts des sols vers l'air intérieur

Au vu du projet d'aménagement prévu sur le site (cf. paragraphe **9.3**), le modèle Bakker sera utilisé. Le modèle de Bakker considère une dalle portée, ce qui est en cohérence avec le système de fondations sur pieux

<u>Dans l'air extérieur</u>, la modélisation des expositions est conduite sur la base des équations de Millington and Quirk et de l'équation de Fick. La dilution par le vent est ensuite calculée dans une boite de taille fixée. Comme pour l'air intérieur, la zone de pollution est considérée comme infinie.

Les équations sont détaillées en Annexe 10.

Hypothèses retenues – paramètres liés au sol et aux aménagements

Les concentrations dans l'air intérieur sont estimées à partir des concentrations mentionnées dans le **Tableau 20**. Les hypothèses retenues pour la réalisation des calculs de transferts des gaz des sol vers l'air intérieur et l'air extérieur, sont rappelées dans les **Tableau 22** à **Tableau 24** et en **Annexe 10**.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 66/127

^[3] Waitz et al., 1996. The VOLASOIL risk assessment model based on CSOIL for soils contaminated with volatile compounds. M.F.W. Waitz; J.I. Freijer; F.A. Swartjes. May 1996. RIVM. Report n° 7581001.

^[4] Johnson PC and Ettinger RA, 1991. Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Env. Sci. Technol. 25, p 1445-1452

^[5] Bakker et al. 2008 RIVM Report 711701049/2008 : Site-specific human risk assessment of soil contamination with volatile compounds

Tableau 22 : Paramètres retenus liés au sol

Profondeur de la pollution	Unités	Valeurs
Profondeur du toit de la source sous le niveau du sol (sous le sol nu en l'absence de recouvrement ou sous la base du recouvrement)	m	0,1

Lithologie	Unités	Horizon1
Nature lithologique	m	Sables grossiers
Epaisseur	m	0,1
Porosité	-	25%
Teneur en eau	-	10%
foc	-	0,2%
Masse volumique du sol	kg/l	1,80

Tableau 23 : Paramètres retenus liés aux scenarios d'aménagements pour l'air intérieur

Bakker (RIVM, 2008)
Paramètres nécessa

Paramètres nécessaires pour l'utilisation du modèle Bakker (2008)	Unités	Valeurs	Sources de données
Différence de pression entre l'air intérieur et extérieur (dP)	Pa	4,00	Valeur conservatoire définie par Johnson et Ettinger
Epaisseur de la dalle du rez-de-chaussée (en l'absence de sous-sol)	m	0,15	Fournis par ENGIE
Perméabilité à l'air de la dalle du rez-de chaussée (en l'absence de sous-sol)	m²	2,0E-13	Valeur par défaut de Bakker et al., 2008 pour une dalle de bonne qualité
Porosité de la dalle béton du rez-de-chaussée (en l'absence de sous-sol)	-	0,12	Données bibliographiques
Teneur en gaz du béton du rez-de-chaussée (en l'absence de sous-sol)	-	0,05	Données bibliographiques
Teneur en eau du béton du rez-de-chaussée (en l'absence de sous-sol)	-	0,07	Données bibliographiques

Géométrie et Ventilation du bâtiment	Unités	Valeurs	Sources de données
Surface	m²	50	Superficie de la zone "Administrative" où les travailleurs seront le plus présents
Hauteur	m	2,5	Données du projet
Renouvellement d'air	/h	1	Données bibliographiques

2 cas de figure : 1. Technicien en charge de la réception du bois. Il sera principalement dehors ou dans le local réception biomasse (25m2 au RdC.

 Technicien en salle de contrôle situé à l'étage, local 50m² maxi

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 67/127

Tableau 24 : Paramètres retenus liés aux scenarios d'aménagements pour l'air extérieur

Dilution par le vent	Unités	Valeurs	Sources de données			
Hauteur de la zone de mélange (adulte)	m	1,5	Hauteur des voies respiratoires des cibles (1,5m pour les adultes)			
Longueur de la zone de mélange	m	100	Longueur du site			
Vitesse moyenne de vent	m/s	5,0	Données moyenne du vent (source : https://fr.windfinder.com/weatherforecast/mazingarbe_hauts_de_france_france			

Recouvrement de surface	Unités	Valeurs
Nature du recouvrement	-	Enrobé
Porosité	-	0,03
Teneur en eau	-	0,00
Epaisseur	m	0,10

Concentrations dans l'air intérieur et extérieur

Le Tableau 25 présente les concentrations estimées en air intérieur et extérieur.

Tableau 25 : Concentrations calculées dans l'air intérieur et extérieur

Substances	
METAUX ET METALLOIDES	
Mercure (Hg)	1
HYDROCARBURES AROMATIQUES POLYCYCLIQUES	
Naphtalène	
COMPOSES AROMATIQUES	
MONOCYCLIQUES	
benzène	
toluène	
ethylbenzène	
M+p-Xylène	
o-Xylène	
HYDROCARBURES SUIVANT LES TPH	
Aliphatic nC>6-nC8	
Aliphatic nC>8-nC10	
Aliphatic nC>10-nC12	
Aliphatic nC>12-nC16 Aromatic nC>8-nC10	_
COMPOSES ORGANO-HALOGENES	
VOLATILS	ı
tétrachloroéthylène (PCE)	_
trichloroéthylène (TCE)	Т
1,1 dichloroéthylène (1,1 DCE)	
chlorure de vinyle (VC)	٦
1,1,1 trichloroéthane	
1,2 dichloroéthane	
1,1 dichloroéthane]
Tétrachlorométhane (CCI4)	
chloroforme (TCmA)	

				calculées dans l'air	extérieur			
AIR EXTERIEUR				AIR INTERIEUR		intérieur	Avec recouvremen	
(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	Bakker	Adultes	
Bruit de fond (source OQAI (P90) ou INERIS,2009 (urbain))	Valeurs réglementaires - décret n° 2010- 1250 (valeur limite/valeur cible)	Valeurs guide OMS	Bruit de fond bureau (P90 - source OFFICAIR)	Valeur réglementaire Décret n° 2011- 1727	VGAI ANSES , VRAI HCSP, INDEX, VG OMS	Air intérieur des lieux de vie (μg/m³)	Air extérieur (μg/m³)	
-	-	1	-	-	-	1.27E-04	8.43E-07	
0.009	-	-	-	-	10	3.16E-03	3.71E-05	
2,2	5	1,7	4.42	2	2	3.53E-02	5.53E-04	
9			21.9		20000	1.42E-02	2.20E-04	
2.1	-	=	4.5	-		3.20E-03	4.50E-05	
5.6	-	•	13.5	-	1500 200	3.20E-03 1.61E-02	2.17E-04	
2.3	-	-	13.5	-	200	5.78E-03		
2,3	-	-	13.3	-	200	5.78E-03	8.98E-05	
-	_	_	-	_	_	7.21E-02	4.13E-03	
-	-	-	-	_	-	4.16E-01	7.04E-03	
9.8	-		-	-	-	2.61E-01	4.41E-03	
-	-		-	-	-	5.11E-02	8.63E-04	
-	-		-	-	-	7.22E-02	1.22E-03	
2.4	-	250	1.1	-	250	6.41E-03	8.78E-05	
1.6	-	23	0.1	-	10	1.12E-03	1.63E-05	
-	-		-	-	-	2.50E-02	3.97E-04	
-	-	10	-	-	-	4.04E-02	7.06E-04	
-	-	-	-	-	-	6.57E-02	9.51E-04	
-	-		-	-	-	5.09E-01	8.78E-03	
-	-	-	-	-	-	2.79E-03	3.90E-05	
-	-	-	-	-	-	3.08E-03	4.46E-05	
-	-	-	-	-	-	2.03E-02	3.51E-04	

Réf : NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 68/127

10.5.2 Estimation des expositions

10.5.2.1 Exposition par inhalation

Le calcul de la concentration moyenne inhalée est réalisé avec l'équation générique suivante (guide EDR du Ministère en charge de l'environnement/BRGM/INERIS, version 2000) :

 $CI_j = [Cj \times t_j \times T \times F / Tm]$

avec : Cl_i : concentration moyenne inhalée du composé j (en mg/m³).

Cj : concentration du composé j dans l'air inhalé (mg/m³).

T : durée d'exposition (années).

F : fréquence d'exposition : nombre de jours d'exposition par an (jours/an). t_j : fraction du temps d'exposition à la concentration C_j pendant une journée (-)

T_m: période de temps sur laquelle l'exposition est moyennée (jours).

Les concentrations moyennes inhalées sont calculées à partir des concentrations de gaz dans l'air présentées dans le **Tableau 25**.

Le détail des calculs est donné en Annexe 11.

10.5.2.2 Budget espace-temps (BET)

Le budget espace-temps des cibles considérées est présenté dans le Tableau 26.

Tableau 26: Budgets espace/temps retenus

Scénario	Cibles	Période de temps sur laquelle
555115	Adultes travailleurs	l'exposition est moyennée
Chaufferie biomasse	T = 42 ans 220 jours par an 8h/jour en intérieur 0,4h/jour en extérieur	 70 ans (correspondant à la durée de vie considérée par l'ensemble des organismes nationaux et internationaux pour l'établissement de valeurs toxicologiques et l'évaluation des risques) pour les effets cancérigènes quelle que soit la cible considérée T (correspondant à durée d'exposition) pour les effets toxiques non cancérigènes quelle

Les données utilisées sont issues de la synthèse des travaux du département santé environnement de l'institut de veille sanitaire sur les variables humaines d'exposition³ d'une part, de l'Exposure Factor Handbook (US-EPA, EFH, 1997 et 2001) d'autre part, et enfin de la règlementation du travail en France.

Pour les durées d'exposition dans le contexte du travail, le cas le plus défavorable a été considéré pour les adultes qui travailleraient pendant <u>42 ans</u> au même endroit (correspondant à la durée totale de la période de travail) ; cependant la variabilité de cette durée d'exposition est importante. Les durées de 220 jours/an et 8 h/jour correspondent aux durées « classiques » du travail en France.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Page 69/127

³ Demeureaux C, Zeghnoun A. Synthèse des travaux du département santé environnement de l'institut de veille sanitaire sur les variables humaines d'exposition. Saint Maurice : Institut de veille sanitaire ; 2012. 28p.

10.6 Quantification des risques sanitaires

10.6.1 Méthodologie

10.6.1.1 Estimation du risque pour les effets toxiques sans seuil

Pour les effets toxiques sans seuil, et pour des faibles expositions, l'excès de risque individuel (ERI) est calculé de la façon suivante :

Les ERI s'expriment sous la forme mathématique 10⁻ⁿ. Par exemple, un excès de risque de 10⁻⁵ présente la probabilité supplémentaire, par rapport à une personne non exposée, de développer un cancer pour 100 000 personnes exposées durant la vie entière.

Pour chaque scénario d'exposition, un ERI global est ensuite calculé en faisant :

- Pour chaque composé, la somme des risques liés à chacune des voies d'exposition,
- La somme des risques liés à chacun des composés cancérogènes.

Il n'existe pas de niveau d'excès de risque individuel universellement acceptable. Les documents du ministère en charge de l'environnement de février 2007, confirmés par ceux de 2017, relatifs aux sites et sols pollués et aux modalités de gestion et de réaménagement des sites pollués, considèrent que le niveau de risque « usuellement [retenue] au niveau international par les organismes en charge de la protection de la santé », de 10-5 est acceptable.

En cas d'exposition conjointe à plusieurs agents dangereux, l'Environmental Protection Agency des États-Unis (US-EPA) recommande de sommer l'ensemble des excès de risque individuels (ERI), quels que soient le type de cancer et l'organe touché, de manière à apprécier le risque cancérigène global qui pèse sur la population exposée.

10.6.1.2 Estimation du risque pour les effets toxiques à seuil

Pour les effets toxiques à seuil, un quotient de danger (QD) est défini pour chaque voie d'exposition de la manière suivante :

$$QD_{i,INH} = \frac{CI_{i,INH}}{RfCi}$$

Un QD inférieur ou égal à 1 signifie que l'exposition de la population n'atteint pas le seuil de dose à partir duquel peuvent apparaître des effets indésirables pour la santé humaine. A l'inverse, un ratio supérieur à 1 signifie que l'effet toxique peut se déclarer dans la population, sans qu'il soit possible d'estimer la probabilité de survenue de cet événement.

En l'absence de doctrine unique sur l'additivité des risques et compte tenu de la méconnaissance à l'heure actuelle des mécanismes d'action pour la majorité des substances, nous procéderons à l'additivité des quotients de danger **en premier niveau d'approche.**

10.6.2 Quantification des risques sanitaires résiduels au droit du site

Les quotients de danger et excès de risques individuels liés aux différentes expositions ont été calculés à partir des valeurs toxicologiques (**Tableau 21**) et des niveaux d'exposition estimés au paragraphe précédent. Ils sont présentés dans le **Tableau 27**. Le détail du calcul est donné en **Annexe 11**.

La méthodologie adoptée est celle préconisée par les circulaires ministérielles de février 2007 reprise dans les textes d'avril 2017. L'évaluation du risque nécessite la prise en compte simultanée d'expositions par différentes voies et concerne l'ensemble des substances pour lesquelles on considérera ici l'additivité des risques.

Tableau 27 : Synthèse des QD et ERI

		ques sans seuil es individuels (ERI)	cano	xiques à seuil cérigènes danger spécifique (QD)	can	ques à seuil non cérigènes de danger (QD)
	Adulte Travailleur	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque
INHALATION air intérieur dans le lieu de vie Bakker	3.41E-07	1,2 dichloroéthane	0.00007	chloroforme (TCmA)	0.001	benzène
INHALATION air extérieur avec recouvrement	2.85E-10	1,2 dichloroéthane	0.00000	chloroforme (TCmA)	0.00000	benzène
TOTAL	3.4E-07		0.00007		0.001	

Dans le cadre de la mission qui nous a été confiée par ENGIE, avec les conditions d'études retenues, et en l'état actuel des connaissances scientifiques, les niveaux de risques estimés sont inférieurs aux critères d'acceptabilité tels que définis par la politique nationale de gestion des sites pollués.

Ainsi, l'état environnemental du site est compatible avec l'usage prévu.

10.7 Analyse des incertitudes

L'analyse des incertitudes d'une évaluation des risques et la sensibilité des paramètres retenus pour cette évaluation est une partie intégrante d'un calcul de risque sanitaire.

Afin de ne pas alourdir cette analyse les paramètres clés de l'évaluation réalisée sont ici discutés, ainsi que leurs incidences sur les résultats de l'évaluation. Ces paramètres clés sont dépendants des scénarios d'exposition et des substances retenues.

 Réf : NO3700187 / 1040141-02
 JGRO / SEP
 25/08/2023
 Page 71/127

Tableau 28 : Variables générant les incertitudes majeures de l'évaluation

Variable	Voie d'exposition touchée	Poids dans l'évaluation			Ą	Approche retenue					
			Choix et caractéristiques des composés	ues des composés							
Nature des composés et concentrations retenues	Inhalation intérieur et extérieur	Fort	Sécuritaire : prise en c Les concentrations en l deux fois.	Sécuritaire : prise en compte des composés quantifiés à leurs concentrations maximales mesurées lors de la campagne de prélèvement de juin 2023. Les concentrations en BTEX ont été soustraites des concentrations TPH aromatiques C ₆ -C ₈ et considérées comme des substances individuelles, pour ne pas qu'elles soient comptabilisées deux fois.	ations maximale H aromatiques (s mesurées lors de C ₆ -C ₈ et considéré	e la campagne es comme des	de prélèvement de substances indivi	de juin 2023. viduelles, po	ur ne pas qu'elles so	vient comptabilisées
Valeurs Toxicologiques de référence	Inhalation et ingestion	Faible ou fort	Les VTR ont été retenu valeurs toxicologiques	Les VTR ont été retenues conformément à la note d'information N°DGS/EA1/DGPR/2014/307 du 31 octobre 2014 relative aux modalités de sélection des substances chimiques et de choix des valeurs toxicologiques de référence pour mener les évaluations des risques sanitaires dans le cadre des études d'impact et de la gestion des sites et sols pollués	EA1/DGPR/201	4/307 du 31 octobr ans le cadre des ét	e 2014 relative udes d'impact	aux modalités de et de la gestion d	e sélection d les sites et s	es substances chimio ols pollués	lues et de choix des
			Il convient de rappeler l A l'heure actuelle, les é les effets de mélanges.	Il convient de rappeler la limite méthodologique des évaluations de risques sanitaires lorsque plusieurs substances peuvent avoir entre elles des effets synergiques ou antagonistes. A l'heure actuelle, les éléments qui permettraient de déterminer si les effets se cumulent ou non ne sont pas disponibles et il n'y a pas de consensus sur une méthode pour prendre en compte les effets de mélanges.	les sanitaires lor fets se cumulent	sque plusieurs sub cou non ne sont pa	stances peuve	int avoir entre elle	es des effets consensus s	es lorsque plusieurs substances peuvent avoir entre elles des effets synergiques ou antagonistes. nulent ou non ne sont pas disponibles et il n'y a pas de consensus sur une méthode pour prendre	gonistes. prendre en compte
Cumul des OD				Somme des ERI ou QD		Justification	l			Consensus	
et des ERI	Toutes	For	ERI	Oui, quels que soient les organes cibles, les types de cancer et les voies d'exposition.	O	parle de cancer en général quelle que soit la cause ou le mécanisme.	ral quelle que s anisme.	soit	70	Oui, internationaux	
			QD	Discutable		Approche par organe cible	ne cible	Proch	e des conse	Proche des consensus nationaux et internationaux	ernationaux
			Si Somme QD >1	Faire la somme par organe cible		1				-	
			Caractéristiques des	Caractéristiques des sources de pollution et concentrations dans les différents milieux	es différents mi	lieux					
Source « gaz du sol »	Inhalation intérieur et extérieur	Fort	Réaliste : pour la camp bâtiment. Par ailleurs, la campagi base de données et les	Réaliste : pour la campagne de mesure réalisée : prise en compte des résultats les plus pénalisants des gaz du sol (piézairs) et profondeur de la source gaz du sol, supposée à 0,1 m sous le bâtiment. Par ailleurs, la campagne de prélèvements a été réalisée en période de juin (condition estivale). Il conviendrait de réaliser une 2 ^{ème} campagne de prélèvement de gaz du sol afin de conforter la base de données et les conclusions de la présente étude.	résultats les plus juin (condition es	s pénalisants des g stivale). Il conviend	laz du sol (piéz Irait de réaliser	cairs) et profonde une 2 ^{ème} campaç	ur de la sour gne de prélè	s plus pénalisants des gaz du sol (piézairs) et profondeur de la source gaz du sol, supposée à 0,1 m sous le tion estivale). Il conviendrait de réaliser une 2 ^{ème} campagne de prélèvement de gaz du sol afin de conforter la	sée à 0,1 m sous le l afin de conforter la
Cas d'un mélange de composés en un même point	Toutes	Fort	Ayant utilisé les donnér de prélèvement. Ainsi, l	Ayant utilisé les données gaz du sol pour la modélisation des transferts vers l'intérieur et extérieur, le mélange et les concentrations à l'équilibre pour chaque substance, se font dans l'ouvrage de prélèvement. Ainsi, la prise en compte ou non de l'équilibre triphasique n'a aucune influence sur les niveaux de risques.	vers l'intérieur et le n'a aucune in	t extérieur, le méla fluence sur les nive	nge et les conc saux de risque:	entrations à l'équs.	uilibre pour c	haque substance, se	font dans l'ouvrage
			Au droit des futurs bâtii compte de l'évolution d Une modification de ce risques, inférieurs aux c	Au droit des futurs bâtiments, la profondeur de la source sol a été considérée à 0,1 m sous la surface du sol, profondeur liée à l'assise des futurs bâtiments. Le modèle considéré ne tient pas compte de l'évolution de la source de pollution et des flux en fonction du temps (source infinie). Une modification de cette profondeur sous bâtiment, avec par exemple une profondeur de 0,01 m sous la surface du sol sous les futurs bâtiments conduit à une augmentation des niveaux de risques, inférieurs aux critères d'acceptabilité.	dérée à 0,1 m s temps (source i une profondeur	ous la surface du s nfinie). de 0,01 m sous la	sol, profondeur surface du sol	liée à l'assise de sous les futurs ba	ss futurs bâti âtiments con	ments. Le modèle co iduit à une augments	nsidéré ne tient pas tion des niveaux de
9					Effets toxiq Excès de risque	Effets toxiques sans seuil Excès de risques individuels (ERI)	Effets toxic cancér Quotient de dar	Effets toxiques à seuil cancérigènes Quotient de danger spécifique (QD)	Effets toxiq canco	Effets toxiques à seuil non cancérigènes Quotient de danger (QD)	
la source	Toutes	Fort			Adulte Travailleur	Composés tirant le risque	Adulte co Travailleur	Composés tirant le risque	Adulte C Travailleur	Composés tirant le risque	
				INHALATION air intérieur dans le lieu de vie Bakker	3 51E 07	1,2 dichloroéthane	0.00007	chloroforme (TCmA)	0.001	benzène	
				INHALATION air extérieur avec recouvrement	2.85E.10	1,2 dichloroéthane	0,00000	chloroforme (TCmA)	0,00000	benzène	
				TOTAL	3.5E-07	22202	0.00007		0.001		
			Un approfondissement Sécuritaire : Au droit d	Un approfondissement de la source conduit à une diminution des niveaux de risques. Sécuritaire : Au droit des espaces extérieurs, la source a été prise en compte à 0,1 n	ıx de risques. ompte à 0,1 m s	es. ,1 m sous la surface du sol.	.jo <u>l</u>				

25/08/2023 Page 72/127 JGRO / SEP Réf : NO3700187 / 1040141-02 Bgp290/21

										/·
Variable	Voie d'exposition touchée	Poids dans l'évaluation		Ap	Approche retenue					
			Caractéristiques des sols							
			Sécuritaire: Compte tenu de leur hétérogénéité, des sols/remblais superficiels considérés comme des sables grossiers (analyses non disponibles de la granulométrie) et directement positionnés sous les dallages. L'application d'une texture encore plus grossière (de type graviers) induirait les niveaux de risques suivants:	erficiels considérés type graviers) ind	s comme des sabl	es grossiers (a de risques su	analyses non disp ivants :	onibles de la	granulométrie) et dir	ectement positionnés
				Effets toxiqu Excès de risque	Effets toxiques sans seuil ès de risques individuels (ER)	Effets toxi cancé Quotient de da (Effets toxiques à seuil cancérigènes Quotient de danger spécifique (QD)	Effets toxiq cano Quotient c	Effets toxiques à seuil non cancérigènes Quotient de danger (QD)	
Lithologie	Toutes	Fort		Adulte Travailleur	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque	
			NHALATION air intérieur dans le lieu de vie Bakker	3.46E-07	1,2 dichloroéthane	0.00007	chloroforme (TCmA)	0.001	benzène	
			INHALATION air extérieur avec recouvrement	3.20E-10	1,2 dichloroéthane	0.00000	chloroforme (TCmA)	0.0000	benzène	
			TOTAL	3.5E-07		0.00007		0.001		
Perméabilité, porosité,	Toutes	TO TO	Sécuritaire: En l'absence de mesures sur site, les valeurs de la littérature (logiciel RISC 4.0) sont prises en compte par défaut. Rappelons que la prise en compte d'une texture plus contraignante des sols et remblais (graviers) induirait des niveaux de risque supérieurs, mais restant inférieurs aux d'acceptabilité. L'incertitude sur la texture des remblais n'est donc pas de nature à modifier les conclusions de la présente ARR.	re (logiciel RISC 4 rs, mais restant inf	.0) sont prises en érieurs aux d'acc	compte par dé eptabilité. L'ind	faut. Rappelons o	que la prise e xture des rer	n compte d'une textu nblais n'est donc pa	re plus contraignante s de nature à modifier
teneur en gaz des sols		<u>;</u>	L'incertitude porte essentiellement sur le degré de compactage des remblais rapportés ou des sols. Un compactage de ceux-ci amènerait à diminuer la porosité et donc les niveaux de risque sanitaire.	mblais rapportés c	ນ des sols. Un cc	ompactage de	ceux-ci amènera	iit à diminuer	la porosité et donc	les niveaux de risque
			Sécuritaire : Pour la lithologie retenue de type sables grossiers, la littérature nous sol analysés, la teneur en eau dans les sols est comprise entre 10 et 32%.		t une teneur en e	au de 10% To	utefois au regard	des analyse	s de matière sèche	fournit une teneur en eau de 10% Toutefois au regard des analyses de matière sèche sur les échantillon de
			En considérant une teneur en eau dans les sols plus basse (5%) témoignant d'un assèchement des sols superficiels, les niveaux de risques induits seraient les suivants	gnant d'un assèch	ement des sols s	uperficiels, les	niveaux de risqu	ies induits se	raient les suivants :	
				Effets toxiqu Excès de risque	Effets toxiques sans seuil Excès de risques individuels (ERI)	Effets toxi cancé Quotient de da (Effets toxiques à seuil cancérigènes Quotient de danger spécifique (QD)	Effets toxiq canc Quotient c	Effets toxiques à seuil non cancérigènes Quotient de danger (QD)	
Teneur en eau	Toutes	Moyen		Adulte Travailleur	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque	
			NHALATION air intérieur dans le lieu de vie Bakker	3.48E-07	1,2 dichloroéthane	0.00007	chloroforme (TCmA)	0.001	benzène	
			INHALATION air extérieur avec recouvrement	3.35E-10	1,2 dichloroéthane	0.00000	chloroforme (TCmA)	0.0000	benzène	
			TOTAL	3.5E-07		0.00007		0.001		
			Un assèchement des sols superficiels n'est donc pas de nature à remettre en cau niveaux de risques.		conclusions de la	présente étue	de. Une augment	tation de la te	eneur en eau induira	se les conclusions de la présente étude. Une augmentation de la teneur en eau induirait une diminution des
			Paramètres d'aménagement							
			Réaliste : recouvrement pérenne et systématique des sols en place, prévu pour l'aménagement du site (dalle béton de bâtiment et enrobé pour les voie de circulation).	révu pour l'aménae	gement du site (d	alle béton de k	oâtiment et enrob	é pour les vo	ie de circulation).	
			Garden de la modernation, des reconstructions de la construction de la	Gamme enrobé asphalté		Bétons	Sols limoneux	ieux		
			3)	(hors enrobé poreux)		(pour mémoire)	(pour mémoire)	oire)		
Couverture de	Inhalation en		Porosité	3%	1	12%	30%			
sol extérieur	extérieur	Fort	Teneur en gaz	3%		2%	12%			
			Teneur en eau	%0		7%	18%			
			L'incertitude sur la nature du recouvrement (typologie et caractéristiques de l'enrob ARR.		ié) des sols en pla	ace et en extér	ieur, n'est donc p	as de nature	à modifier les concl	é utilisé) des sols en place et en extérieur, n'est donc pas de nature à modifier les conclusions de la présente
	_		Toutefois dans le cas, où des espaces verts devaient mis en œuvre, nous considèrerions un recouvrement par de la terre végétale. Si un tel recouvrement était mis en œuvre, les niveaux de risques attendus seraient les suivants :	ous considèrerion	s un recouvreme	nt par de la ter	re végétale. Si uı	n tel recouvr	ement était mis en o	euvre, les niveaux de

Bgp290/21

									io. Ailaiyse des i	IV. Allalyse des Nisques Nesidueis (ANN)
Variable	Voie d'exposition touchée	Poids dans l'évaluation		Ap	Approche retenue					
				Effets toxiqu Excès de risques	Effets toxiques sans seuil Excès de risques individuels (ERI)	Effets tox cance	Effets toxiques à seuil cancérigènes Quotient de danger spécifique (QD)	Effets toxiqu cancé Quotient de	Effets toxiques à seuil non cancérigènes Quotient de danger (QD)	
				Adulte C	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque	Adulte Caravailleur	Composés tirant le risque	
			INHALATION air intérieur dans le lieu de vie Bakker	3.41E-07	1,2 dichloroéthane	0.00007	chloroforme (TCmA)	0.001	benzène	
			INHALATION air extérieur avec recouvrement	4.76E-10	1,2 dichloroéthane	0.0000	chloroforme (TCmA)	0.00000	benzène	
			TOTAL	3.4E-07	20100	0.00007	(2000)	0.001		
			Ainsi, la nature du recouvrement n'est pas de nature à remettre en cause les concl	e les conclusions	lusions de la présente étude.	nde.				
			Sécuritaire: Les calculs de transfert des pollutions du sol vers l'air intérieur (et les risques induits) ont été calculés en considérant le modèle de Bakker (1991) qui prend en compte un transfert des pollutions directement à travers la dalle. Etant donné qu'il s'agit de futur bâtiment neuf nous avons retenu la valeur de la perméabilité retenue par défaut est de 2.10 ⁻¹³ m² pour les modèles de Bakker et al. (2008)	ieur (et les risque utur bâtiment neu	s induits) ont été o if nous avons rete	calculés en α ınu la valeur c	onsidérant le mode le la perméabilité	èle de Bakker retenue par c	r (1991) qui prend défaut est de 2.10 ⁻	en compte un transfert 13 m² pour les modèles
			Si un autre mode constructif était retenu, les calculs de transfert seraient différents et intègreraient dans les calculs le transfert des polluants à travers les fissurations périphériques de la dalle qui se créé lors du séchage d'un dallage indépendant (modèle de Johnson et Ettinger).	nt différents et intè on et Ettinger).	ègreraient dans le	s calculs le tr	ansfert des pollua	ants à travers	les fissurations pé	ériphériques de la dalle
			La prise en compte du modèle de Johnson et Ettinger pour les calculs de transferts vers l'air intérieur conduirait aux niveaux de risques suivants :	e transferts vers	l'air intérieur cond	uirait aux nive	aux de risques su	nivants:		
Mode constructif	Inhalation dans l'air intérieur	Fort		Effets toxiqu Excès de risques	Effets toxiques sans seuil Excès de risques individuels (ERI)	Effets tox canco	Effets toxiques à seuil cancérigènes Quotient de danger spécifique (QD)	Effets toxiqu cancé Quotient de	Effets toxiques à seuil non cancérigènes Quotient de danger (QD)	
				Adulte C Travailleur	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque	Adulte C Travailleur	Composés tirant le risque	
			INHALATION air intérieur dans le lieu de vie J&E	2.05E-06	1,2 dichloroéthane	0.0004	chloroforme (TCmA)	0.007	benzène	
			INHALATION air extérieur avec recouvrement	2.85E-10	1,2 dichloroéthane	0.0000	chloroforme (TCmA)	0.0000	benzène	
			TOTAL	2.0E.06	656	0.0004	6853	2000		
						10000	66			
			En considérant ce modèle de transfert, les niveaux de risques pour les effets sans seuils (ERI) sont presque multipliés par 10 sans pour autant remettre en cause les conclusions de la présente étude.	ffets sans seuils ((ERI) sont presqu	e multipliés pa	ar 10 sans pour au	utant remettre	en cause les cond	clusions de la présente
			Sécuritaire : en l'absence de projet bien défini, une pièce de dimensions caractéristiques d'un bureau a été retenue pour la réalisation des calculs de risques. Cette approche est sécuritaire, étant entendu que cette pièce sera probablement positionnée dans un bâtiment de type halle industrielle d'un volume et d'une superficie bien plus grande. La prise en compte d'une taille de local industriel de plus petite taille considérant une pièce de 10 m² conduit aux niveaux de risques suivants, en considérant les mêmes hypothèses que le scénario de base :	ns caractéristique lâtiment de type h onsidérant une pie	is d'un bureau a é nalle industrielle d' èce de 10 m² con	sté retenue po un volume et iduit aux nive	ur la réalisation d d'une superficie b aux de risques su	les calculs de bien plus gran uivants, en co	risques. Cette ap nde. onsidérant les mên	istiques d'un bureau a été retenue pour la réalisation des calculs de risques. Cette approche est sécuritaire, type halle industrielle d'un volume et d'une superficie bien plus grande. une pièce de 10 m² conduit aux niveaux de risques suivants, en considérant les mêmes hypothèses que le
Taille et caractéristique	Inhalation dans l'air	З		Effets toxiqu Excès de risques	Effets toxiques sans seuil Excès de risques individuels (ERI)	Effets tox cance Quotient de da	Effets toxiques à seuil cancérigènes Quotient de danger spécifique (QD)	Effets toxiqu cancé Quotient de	Effets toxiques à seuil non cancérigènes Quotient de danger (QD)	
du bâtiment et du dallage	intérieur	<u>0</u>		Adulte C	Composés tirant le risque	Adulte Travailleur	Composés tirant le risque	Adulte C Travailleur	Composés tirant le risque	
			INHALATION air intérieur dans le lieu de vie Bakker	3.41E-07	1,2 dichloroéthane	0.00007	chloroforme (TCmA)	0.001	benzène	
			INHALATION air extérieur avec recouvrement	2.85E-10	1,2 dichloroéthane	0.0000	chloroforme (TCmA)	0.0000	benzène	
			TOTAL	3.4E-07	00000	0.00007	(2020)	0,001		
			Ce paramètre n'est donc pas de nature à remettre en cause les conclusions de cette étude	ions de cette étuc	Je.					
			Sécuritaire: prise en compte du taux de ventilation retenu pour des bureaux et locaux sans travail physique (en référence à l'article R232-5-3 du décret n°84-1093 (code du travail),	eaux et locaux se	ans travail physiqu	Je (en référer	ce à l'article R232	2-5-3 du décr	et n°84-1093 (code	e du travail)) <mark>.</mark>
Taux de	1 1 1 1 1 1 1 1 1 1 1 1		Usage	Renouvellement d'air (h-1)	nt	Sou	Source d'information	۵		
ventilation des bâtiments	bâtiments	Fort	Bureaux	1 h ⁻¹	Pou Référence	ir les bureaux débit minim e : R232-5-3 (Pour les bureaux et locaux sans travail physique, débit minimum de 25 m³/h/personne Référence : R232-5-3 du décret n°84-1093 (code du travail)	avail physique ersonne 193 (code du t	e, Iravail)	
			Ces taux influencent de manière inversement linéaire les concentrations dans les bâtiments et donc les risques induits.	dans les bâtimer	nts et donc les risc	ques induits.				

Bgp290/21

Variable	Voie d'exposition touchée	Poids dans l'évaluation	Approche retenue
			La prise en compte d'un taux de ventilation (renouvellement : 0.1h-¹) plus faible traduisant un dysfonctionnement du système de ventilation pourrait conduire sous certaines conditions à des niveaux de risques supérieurs aux critères d'acceptabilité et remettre en cause les conclusions de la présente étude. Le taux de ventilation retenu est conforme au code du travail et devra être respecté pour les constructions futures.
Vieillissement du bâtiment, des systèmes et équipements	Inhalation dans les bâtiments	Fort	Réaliste: prise en compte d'une qualité de dalle « neuve » avec une perméabilité à l'air de 2.10 ⁻¹³ m². L'hypothèse d'une qualité moindre de la dalle (« normale » et impliquant une perméabilité de 2.10 ⁻¹¹ m²), induirait les niveaux de risque de l'ordre de grandeur des critères d'acceptabilité pour les effets sans seuils. Aussi, le vieillissement du bâtiment ne peut être anticipé dans la présente ARR. La défaillance de la ventilation (réduction des débits) en lien avec des défauts d'entretien et de maintenance pourrait conduire à augmenter les concentrations dans l'air intérieur. Ainsi, il est recommandé d'inscrire dans les documents supports de l'exploitation cet enjeu (carnet de vie, carnet d'entretien), afin que les futurs exploitants mettent en œuvre l'entretien et la maintenance nécessaire. Le vieillissement de la dalle interface entre le sol et l'air intérieur devra être limité (fissuration) et les points singuliers de passage de la dalle (réseaux par exemple) devront être étanchés. Ainsi, lors de la conception et lors de la construction, cet enjeu devra avoir été considéré.
			Paramètres liés aux usagés/cibles
Durée d'exposition des cibles	Inhalation intérieur et extérieur	Faible	Sécuritaire : la durée d'exposition des futurs travailleurs dans le contexte du travail a été basée sur des conditions classiques (8h/j et 42 ans au même endroit). En cas de présence moins longue sur les lieux de travail (par exemple 20 ans au lieu de 42), les niveaux de risques pour les effets à seuil restent inchangés. Pour les effets sans seuil, les niveaux de risque sont plus faibles et restent donc acceptables.

De cette étude de sensibilité, il ressort que :

- Plusieurs paramètres (caractéristiques du sol, dont la teneur en eau et la lithologie, la profondeur de la source, le modèle constructif, et la longueur de la zone de mélange) peuvent engendrer des augmentations de niveaux de risques sans pour autant, sur la base des hypothèses considérées, remettre en cause les conclusions de la présente étude ;
- La prise en compte d'un taux de ventilation plus faible que celui considéré dans l'étude (<0.1 h⁻¹ renouvellement au lieu de 1 h⁻¹) simulant un dysfonctionnement du système de ventilation pourrait conduire à niveaux de risques proches des critères d'acceptabilité, sans toutefois remettre en cause les conclusions de cette étude.

Ainsi, le taux de ventilation retenu (1 h-1 renouvellement) est conforme au code du travail et devra être respecté pour les constructions futures.

En outre, les recommandations principales sont rappelées ci-après :

- Au moins 1 campagne complémentaire sur les gaz des sols, afin de vérifier les ordres de grandeur des concentrations mesurées lors de la campagne de juin 2023, et ainsi confirmer les concentrations retenues dans le cadre de la présente analyse des enjeux sanitaires ;
- Recouvrement systématique des sols en place (dallage ou enrobé);
- Mettre en place des canalisations anti-perméation pour le réseau AEP et enfouies dans des tranchées comblées de sablon sain.

Ces conclusions ne sont valables que pour les conditions précisées ci-dessus. Dans tous les cas, l'ARR devra être mise à jour en cas de modification des hypothèses d'aménagement retenues.

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 11. Synthèse et recommandations

11. Synthèse et recommandations

11.1 Synthèse

ENGIE SOLUTIONS envisage l'implantation d'une chaudière biomasse sur une zone localisée au sud du site VYNOVA, chemin des soldats à Mazingarbe (62).

La zone concernée a fait l'objet d'investigation réalisées par GINGER BURGEAP en mars 2023 pour le compte de VYNOVA et d'un rapport de diagnostic de la qualité environnementale du milieu souterrain référencé 1017982-01 / NO3700093 / CV NO0000196, daté du 27/03/2023.

Ces investigations ont été complétées par 10 sondages de sols complémentaires et de la mise en œuvre de 4 piézairs, réalisés en juin 2023 pour le compte d'ENGIE.

Aucune historique et documentaire n'a été réalisée au droit de la zone d'étude. Toutefois, de notre connaissance du secteur, il apparaît que :

- Le site industriel VYNOVA a été occupé par la cokerie de Mazingarbe jusque dans les années 1980.
- Plusieurs activités ont été menées sur site depuis les années 1890 : cokerie, lavoirs, ateliers de production d'éthanol, centrale électrique, production d'acide nitrique, production d'ammo-nitrates, production d'engrais complexes, production de PVC.

La zone d'étude est incluse dans le site BASOL SSP000368301 (ancien lavoirs et cokerie de Mazingarbe). De nombreux sites BASIAS sont également présents au sein du site VYNOVA.

Le site VYNOVA présente des pollutions en métaux, hydrocarbures, BTEX, COHV, HAP, chlorures, sulfates, ammonium et cyanures.

Les investigations sur les sols (sur les 2 campagnes) et les gaz du sol (campagne de juin 2023) ont mis en évidence :

- Impacts quasi généralisés dans les sols de surface en HAP (dont le naphtalène), hydrocarbures C₁₀-C₄₀ et cyanures, et ponctuellement jusque 4 m de profondeur au droit du futur bâtiment de la chaudière biomasse et des espaces extérieurs au nord du futur bâtiment;
- Des impacts ponctuels en COHV et BTEX dans les sols jusque 2-3 m de profondeur. Ces impacts ponctuels sont également retrouvés dans les gaz du sol ;
- Un bruit de fond sur l'ensemble du site en hydrocarbures, COHV, BTEX et naphtalène dans les gaz du sol, plus assimilable à un dégazage de composés volatils en provenance de la nappe que depuis les sols :
- Des dépassements du bruit de fond pédo-géochimique du Nord-Pas-de-Calais en métaux dans les remblais superficiels.

Dans le cadre de la mise en œuvre des terrassements généraux de VRD et de voirie, une partie des matériaux à excaver ne pourra pas être considérée comme inerte et devra faire l'objet d'une gestion spécifique. La gestion de ces matériaux impactés génèrera un surcoût. Il a été envisagé 2 scénarios de gestion :

- Excavation et élimination hors site en filière spécialisée des matériaux non inertes. Coût estimé entre 780 et 940 k€;
- Excavation et mise en confinement par encapsulation sur site des matériaux non inertes. Coût estimé entre 215 et 235 k€.

 Réf : NO3700187 / 1040141-02
 JGRO / SEP
 25/08/2023
 Page 76/127

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 11. Synthèse et recommandations

Par ailleurs, une analyse de risques résiduels a été réalisée dans le cadre de la présente étude.

Dans le cadre de la mission qui nous a été confiée par ENGIE, avec les conditions d'études retenues, et en l'état actuel des connaissances scientifiques, les niveaux de risques estimés sont inférieurs aux critères d'acceptabilité tels que définis par la politique nationale de gestion des sites pollués.

Ainsi, l'état environnemental du site est compatible avec l'usage prévu.

De l'étude de sensibilité, il ressort que plusieurs paramètres (caractéristiques du sol, dont la teneur en eau et la lithologie, la profondeur de la source, le modèle constructif, et la longueur de la zone de mélange) peuvent engendrer des augmentations des niveaux de risques sans pour autant remettre en cause les conclusions de la présente étude.

La prise en compte d'un taux de ventilation plus faible que celui considéré dans l'étude (<0.1 h-¹ renouvellement au lieu de 1 h-¹) simulant un dysfonctionnement du système de ventilation pourrait conduire à niveaux de risques proches des critères d'acceptabilité, sans toutefois remettre en cause les conclusions de cette étude. Il conviendra donc d'assurer un taux de ventilation d'a minima 1h-¹ renouvellement. Ce taux est conforme au cade du travail et devra être respecté.

Ces conclusions ne sont valables que pour les conditions précisées ci-dessus. Dans tous les cas, l'ARR devra être mise à jour en cas de modification des hypothèses d'aménagement retenues.

11.2 Recommandations

Les recommandations principales sont rappelées ci-après :

- Au moins 1 campagne complémentaire sur les gaz des sols, afin de vérifier les ordres de grandeur des concentrations mesurées lors de la campagne de juin 2023, et ainsi confirmer les concentrations retenues dans le cadre de la présente analyse des enjeux sanitaires;
- Recouvrement systématique des sols en place (dallage ou enrobé);
- Mettre en place des canalisations anti-perméation pour le réseau AEP et enfouies dans des tranchées comblées de sablon sain.

Le **Tableau 29** présente les restrictions d'usages et/ou recommandations à mettre en œuvre dans le cadre de la conservation de la mémoire du site.

 Réf : NO3700187 / 1040141-02
 JGRO / SEP
 25/08/2023
 Page 77/127

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 11. Synthèse et recommandations

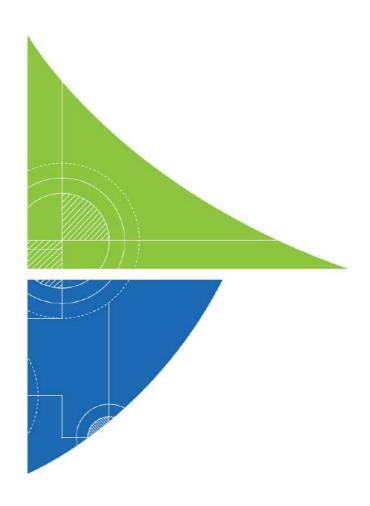
Tableau 29: Restrictions d'usage et recommandations

Restrictions relatives aux <u>usages</u> <u>des sols</u>	Restrictions relatives aux <u>usages</u> <u>du sous-sol</u>	Restrictions relatives aux <u>usages</u> <u>des eaux souterraines</u>
Usages autorisés: Ceux définis ci-avant dans la présente étude: Bâtiments de type locaux industriels; Des espaces extérieurs recouverts.	Usages autorisés: Pas d'usage du sous-sol prévu dans le cadre de la présente étude. Une mise à jour de la présente ARR devra être réalisée le cas échéant.	<u>Usages autorisés</u> : Aucun
Usages interdits: Tout autre usage que celui étudié dans le cadre de la présente étude; Tout changement d'usage nécessitera l'actualisation de l'analyse des risques résiduels.	Usages interdits: Tout autre usage que celui étudié dans le cadre de la présente étude sans étude complémentaire; Passage de canalisations d'eau potable en PEHD dans les sols impactés; Infiltration des collectes des eaux pluviales dans le sol.	Usages interdits: L'usage des eaux souterraines est interdit dans le cadre de l'aménagement du site, sauf pour la mise en place d'ouvrages de surveillance de la qualité de la nappe. Tout usage de l'eau au droit du site devra être validé par la réalisation des études adéquates qui devront être validées par l'administration.
Recommandations particulières: Assurer un bon fonctionnement du système de ventilation des bâtiments; Recouvrement de l'ensemble de la zone d'étude; Inscription aux dossiers d'urbanisme, actes notariés la localisation des impacts résiduels; Révision de la présente étude en cas de changement des hypothèses constructives ou de tout autre paramètre considéré; En cas de mise en œuvre du confinement par encapsulation, la zone choisie sera « sanctuarisée » et devra faire l'objet d'une servitude.	 Recommandations particulières: Mise en place de canalisation d'eau potable anti-perméation dans des terrains sains (type sablon); Conservation de la mémoire des impacts résiduels présents dans les sols laissés en place, en vue des aménagements futurs par d'éventuels repreneurs et inscription aux dossiers d'urbanisme, actes notariés; En cas de suppression partielle ou totale de la couverture : révision de l'ARR; Gestion (y compris HSE) appropriée des déblais et d'éventuelles eaux d'exhaure en cas d'excavation, traçabilité du devenir des déblais et des éventuelles eaux d'exhaure et maintien du recouvrement des terres du site. 	Recommandations particulières : Aucune

-Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels 12. Limites d'utilisation d'une étude de pollution

12. Limites d'utilisation d'une étude de pollution

- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de GINGER BURGEAP.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de GINGER BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.
- 5- Un rapport d'étude de pollution et toutes ses annexes identifiées constituent un ensemble indissociable. Dans ce cadre, toute autre interprétation qui pourrait être faite d'une communication ou reproduction partielle ne saurait engager la responsabilité de GINGER BURGEAP. En particulier l'utilisation même partielle de ces résultats et conclusions par un autre maître d'Ouvrage ou pour un autre projet que celui objet de la mission confiée ne pourra en aucun cas engager la responsabilité de GINGER BURGEAP


La responsabilité de GINGER BURGEAP ne pourra être engagée en dehors du cadre de la mission objet du présent mémoire si les préconisations ne sont pas mises en œuvre.

 Réf : NO3700187 / 1040141-02
 JGRO / SEP
 25/08/2023
 Page 79/127

ANNEXES

Annexe 1. Propriétés physico-chimiques

Cette annexe contient 6 pages.

(IARC)

▶ -Diagnostic complémentaire du milieu souterrain -Plan de Gestion des déblais -Analyse des Risques Résiduels

LEGENDE Volatilité : LEGENDE Solubilité :

++:S>100 -: 1>S>0.01 mg/l ++ :Pv > 1000 PA (COV) mg/l - : 10 >P> 10-2 Pa (non COV)

+:100>S>1 + : 1000 > Pv > 10 Pa (COV) -- : 10-2 >P> 10-5 Pa (non COV) -- : S<0.01 mg/l mg/l

Volatilité solubilité Classement classement cancérogénéicité Mention de danger CIRC Pv S CAS n°R symboles UE EPA

METAUX ET METALLOIDES

Antimoine (Sb)	7440-36-0	non adequat	non adequat	SGH07, SGH09	H332, H302, H411	C2	-	-
Arsenic (As)	7440-38-2	non adequat	non adequat	SGH06, SGH09	H331, H301, H400, H410	C1A	1	А
Baryum (Ba)	non adéquat	non adequat	Soluble dans l'éthanol ?	-	-	-	-	D
Cadmium (Cd)	7440-43-9	non adequat	non adequat	SGH06, SGH08, SGH09	H350, H341, H361fd, H330, H372, H400, H410	C1B/C2 M1B/M2 R1B/R2	1	prob canc
Chrome III (CrIII)	1308-38-9	non adequat	non adequat	-	-	-	3	D
Chrome VI (CrVI)	trioxyde de Cr 1333-82-0	non adequat	non adequat	SGH03, SGH05, SGH06, SGH08, SGH09	H271, H350, H340, H361f, H330, H311, H301, H372, H314, H334, H317, H410	C1A M1B R2	1	A (inh°) D (oral)
Cobalt (Co)	7440-48-4	non adequat	non adequat	SGH08	H334, H317, H413	C1B M2 R1B	2B	-
Cuivre (Cu)	7440-50-8	non adequat	non adequat	-	-	-	3	D
Etain (Sn)	non adéquat	non adequat	non adequat	-	-	-	-	-
Manganèse (Mn)	non adéquat	non adequat	non adequat	SGH07 (dioxyde)	H332, H302 (dioxyde)		-	D
Mercure (Hg)	7439-97-6	non adequat	non adequat	SGH06, SGH08, SGH09	H360D, H330, H372, H400, H410	R1B	3	CàD
Molybdène (Mo)	7439-98-7	non adequat	non adequat	trioxyde : SGH07, SGH08	Trioxyde : H351, H319, H335	trioxyde : C2	-	-
Nickel (Ni)	7440-02-0	non adequat	non adequat	SGH07, SGH08	H351, H372, H317, H412	C2	2В	Α
Plomb (Pb)	7439-92-1	non adequat	non adequat	SGH07, SGH08, SGH09	H360Df, H332, H373, H400, H410	R1A	2В	B2
Sélénium (Se)	7782-49-2	non adequat	non adequat	SGH06, SGH08	H331, H301, H373, H413	-	3	D
Thallium (TI)	7440-28-0	non adequat	non adequat	SGH06, SGH08	H330, H300, H373, H413	-	-	D
Vanadium (Va)	7440-62-2	non adequat	non adequat	-	-	-	3	D
Zinc (Zn)	7440-66-6 (poudre)	non adequat	non adequat	SGH02 (pyrophorique) SGH09	H250, H260 (pyrophorique) H400, H410	-	-	D
	HYDROCAR	BURES	AROM	ATIQUES	POLYCYCLIQ	UES		
Naphtalène	91-20-3	+	+	SGH07, SGH08, SGH09	H351, H302, H400, H410	C2	2В	С
Acénaphtylène	208-96-8	-	+	-	-	-	-	D
Acénaphtène	83-29-9	-	+	-	-	-	-	-

LEGENDE Volatilité : LEGENDE Solubilité :

++ :Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) | ++ : S>100 | mg/l -: 1>5>0.01 mg/l

+: 1000 > Pv > 10 Pa (COV) --: 10-2 >P> 10-5 Pa (non COV) +: 100>S>1 mg/l --: S<0.01 mg/l

		Volatilité	solubilité	Classement	Montion do dongos	classement o	cancérogér	néicité
	CAS n°R	Pv	S	symboles	Mention de danger	UE	CIRC (IARC)	EPA
Fluorène	86-73-7	-	+	-	-	-	3	D
Phénanthrène	85-01-8	-	+	-	-	-	3	D
Anthracène	120-12-7		-	-	-	-	3	D
Fluoranthène	206-44-0		-	-	-	-	3	D
Pyrène	129-00-0		-	-	-	-	3	D
Benzo(a)anthracène	56-55-3	-		SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Chrysène	218-01-9		-	SGH08, SGH09	H350, H341, H400, H410	C1B M2	3	B2
benzo(b)fluoranthène	205-99-2	-		SGH08, SGH09	H350, H400, H410	C1B	2B	B2
benzo(k)fluoranthène	207-08-9			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Benzo(a)pyrène	50-32-8			SGH07, SGH08,	H340, H350, H360FD, H317,	C1B M1B	1	А
				SGH09	H400, H410	R1B		
Dibenzo(a,h)anthracène	53-70-3			SGH08, SGH09	H350, H400, H410	C1B	2A	B2
benzo(g,h,i) pérylène	191-24-2			-	-	-	3	D
indéno(1,2,3-c,d)pyrène	193-39-5		-	-	-	-	2B	B2

LEGENDE Volatilité : LEGENDE Solubilité :

++:Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) | ++: S>100 mg/l -: 1>5>0.01 mg/l

+:100>S>1

+: 1000 > Pv > 10 Pa (COV) --: 10-2 >P> 10-5 Pa (non COV) mg/l --: \$<0.01 mg/l

CAS n°R Pv S symboles Mention de danger Classement cancérogénéicité

UE CIRC (IARC) EPA

COMPOSES AROMATIQUES MONOCYCLIQUES

benzène	71-43-2	++	++	SGH02, SGH07, SGH08	H225, H350, H340, H372, H304, H319, H315	C1A M1B	1	Α
toluène	108-88-3	++	++	SGH02, SGH07, SGH08	H225, H361d, H304, H373, H315, H336	R2	3	D
éthylbenzène	100-41-4	+	++	SGH02, SGH07	H225, H332	=	2B	-
xylènes	1330-20-7	+	++	SGH02, SGH07	H226, H332, H312, H315	-	3	-
styrène	100-42-5	+	++	SGH02, SGH07	H226, H332, H319, H315	-	2B	-
cumène (isopropylbenzène)	98-82-8	+	+	SGH02, SGH07, SGH08, SGH09	H226, H304, H335, H411	-	2B	D
mesitylène (1,3,5 Triméthylbenzène)	108-67-8	+	+	SGH02, SGH07, SGH09	H226, H335, H411	-		=
pseudocumène (1,2,4 Triméthylbenzène)	95-63-6	+	+	SGH02, SGH07, SGH09	H226, H332, H319, H335, H315, H411	-	-	-

COMPOSES ORGANO-HALOGENES VOLATILS

PCE (tétrachloroéthylène)	127-18-4	++	++	SGH08, SGH09	H351, H411	C2	2A	B1
TCE (trichloroéthylène)	79-01-6	++	++	SGH07, SGH08	H350, H341, H319, H315, H336, H412	C1B M2	1	Α
cis 1,2DCE (dichloroéthylène)	156-59-2	++	++	SGH02, SGH07	H225, H335, H412	-	-	D
trans 1,2DCE (dichloroéthylène)	156-60-5		++	SGH02, SGH07	H225, H335, H412	-	-	D
1,1 DCE (1,1 dichloroéthylène)	75-35-4	++	++	SGH02, SGH07, SGH08	H224, H351, H332	C2	3	С
VC (chlorure de vinyle)	75-01-4	++	++	SGH02, SGH08	H220, H350	C1A	1	Α
1,1,2 trichloroéthane	79-00-5	++	++	SGH07, SGH08	H351, H332, H312, EUH066	C2	3	С
1,1,1 trichloroéthane	71-55-6	++	++	SGH07	H332, EUH059	-	3	D
1,2 dichloroéthane	107-06-2	++	++	SGH02, SGH07, SGH08.	H225, H350, H302, H319, H335, H315	C1B	2В	B2
1,1 dichloroéthane	75-34-3	++	++	SGH02, SGH07	H225, H302, H319, H335, H412	-	-	С
Tétrachlorométhane	56-23-5	++	++	SGH06, SGH08	H351, H331, H311, H301, H372, H412, EUH059	C2	2B	B2
TCmA (trichlorométhane ou chloroforme)	67-66-3	++	++	SGH07, SGH08	H351, H302, H373, H315	C2	2B	B2
dichlorométhane	75-09-2	++	++	SGH08, SGH09	H351	C2	2B	B2
trichlorobenzènes	87-61-1 120-82-1 108-70-3	+	+	SGH07, SGH09	H302, H315, H400, H410	-	-	(1,2,4) D
1,2 dichlorobenzène	95-50-1	+	+	SGH07, SGH09	H302, H319, H335, H315, H400, H410	-	3	D
1,3 dichlorobenzène	541-73-1	+	++	-	-	-	3	D

LEGENDE Volatilité : LEGENDE Solubilité :

++ :Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) | ++ :S>100 | mg/l -: 1>5>0.01 mg/l

+:100>S>1

+ : 1000 > Pv > 10 Pa (COV) -- : 10-2 >P> 10-5 Pa (non COV) mg/l -- : S<0.01 mg/l

			Volatilité	solubilité	Classement	Mantian de deserr	classement o	cancérogér	éicité
		CAS n°R	Pv	S	symboles	Mention de danger	UE	CIRC (IARC)	EPA
1,4 d	lichlorobenzène	106-46-7	+	+	SGH08, SGH09	H351, H319, H400, H410	C2	2B	-
chlore	obenzène	108-90-7	++	++	SGH02, SGH07, SGH09	H226, H332, H411	-	ī	D

HYDROCARBURES SUIVANT LES TPH

Aliphatic nC>5-nC6	non adéquat	++	+				
Aliphatic nC>6-nC8	II .	++	+				
Aliphatic nC>8-nC10	II .	+	-				
Aliphatic nC>10-nC12	II .	+	-				
Aliphatic nC>12-nC16	II .	=		white spirit, essences			
Aliphatic nC>16-nC35	II .	-		spéciales,			
Aliphatic nC>35	II .			solvants aromatiques		classement fonction des	
Aromatic nC>5-nC7 benzène	"	++	++	légers, pétroles lampants	H350, H340, H304	hydrocarbures	
Aromatic nC>7-nC8 toluène	II .	++	++	(kérosène) :			
Aromatic nC>8-nC10	II .	+	+	SGH08			
Aromatic nC>10-nC12	II .	+	+				
Aromatic nC>12-nC16	ıı .	-	+				
Aromatic nC>16-nC21	II .	-	-				
Aromatic nC>21-nC35	II II	==					

...........

М	ENTIONS DE DANGER		
	28 mentions de danger physique		
•	H200 : Explosif instable	•	H240 : Peut exploser sous l'effet de la chaleur
•	H201 : Explosif ; danger d'explosion en masse	•	H241 : Peut s'enflammer ou exploser sous l'effet de la chaleur
•	H202 : Explosif ; danger sérieux de projection	•	H242 : Peut s'enflammer sous l'effet de la chaleur
•	H203 : Explosif ; danger d'incendie, d'effet de souffle ou de projection	•	H250 : S'enflamme spontanément au contact de l'air
•	H204 : Danger d'incendie ou de projection	•	H251 : Matière auto-échauffante ; peut s'enflammer
•	H205 : Danger d'explosion en masse en cas d'incendie	•	H252 : Matière auto-échauffante en grandes quantités ; peut s'enflammer
•	H220 : Gaz extrêmement inflammable	•	H260 : Dégage au contact de l'eau des gaz inflammables qui peuvent s'enflammer spontanément
•	H221 : Gaz inflammable	•	H261 : Dégage au contact de l'eau des gaz
•	H222: Aérosol extrêmement inflammable	•	H270 : Peut provoquer ou aggraver un incendie ; comburant
•	H223: Aérosol inflammable	•	H271: Peut provoquer un incendie ou une explosion; comburant puissant
•	H224 : Liquide et vapeurs extrêmement inflammables	•	H272: Peut aggraver un incendie; comburant
•	H225 : Liquide et vapeurs très inflammables	•	H280 : Contient un gaz sous pression ; peut exploser sous l'effet de la chaleur
•	H226: Liquide et vapeurs inflammables	•	H281 : Contient un gaz réfrigéré ; peut causer des brûlures ou blessures cryogéniques
•	H228 : Matière solide inflammable	•	H290 : Peut être corrosif pour les métaux

38 mentions de danger pour la santé

•	H300 : Mortel en cas d'ingestion	•	H317 : Peut provoquer une allergie cutanée
•	H301 : Toxique en cas d'ingestion	•	H318 : Provoque des lésions oculaires graves
•	H302 : Nocif en cas d'ingestion	•	H319 : Provoque une sévère irritation des yeux
•	H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies	;	H330 : Mortel par inhalation
res	piratoires		11550 : Horei per illianten
•	H310 : Mortel par contact cutané	•	H331 : Toxique par inhalation
•	H311 : Toxique par contact cutané	•	H332: Nocif par inhalation
	H312 : Nocif par contact cutané	•	H334 : Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés respiratoires par
		ınha	lation
•	H314 : Provoque des brûlures de la peau et des lésions oculaires graves	•	H335 : Peut irriter les voies respiratoires
•	H315 : Provoque une irritation cutanée	•	H336: Peut provoquer somnolence ou vertiges

- H340 : Peut induire des anomalies génétiques <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H341 : Susceptible d'induire des anomalies génétiques <indiquer la voie d'exposition s'îl est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même dangert>
- H350: Peut provoquer le cancer < indiquer la voie d'exposition s'1 est H370: Risque avéré d'effets graves pour les organes < ou indiquer tous les organes affectés, s'1s sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même connus> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne ger> conduit au même danger>
 H351 : Susceptible de provoquer le cancer <indiquer la voie d'exposition s'il « H371 : Risque présumé d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils danger>
- est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'î est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'î est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'î est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'î est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'î est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'î est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition ne conduit au même sont connus s'indiquer la voie d'exposition ne conduit au même sont connus s'indiquer la voie d'exposition ne conduit au même sont connus s'indiquer la voie d'exposition ne conduit au même sont connus s'indiquer la voie d'exposition ne conduit au même sont connus s'indiquer la voie d'exposition ne conduit au même sont connus s'indiquer la voie d'exposition ne conduit au même sont connus s'indiquer la voie d'exposition ne conduit au même s'indiquer la voie d'exposition ne condu danger> ne conduit au même danger>
- autre voie d'exposition ne conduit au même danger>
- H361 : Susceptible de nuire à la fertilité ou au foetus <indiquer l'effet s'il est autre voie d'exposition ne conduit au même danger>
- H362 : Peut être nocif pour les bébés nourris au lait maternel
- H360 : Peut nuire à la fertilité ou au foetus <indiquer l'effet spécifique s'1 » H372 : Risque avéré d'effets graves pour les organes <indiquer tous les organes affectés, s'is sont est connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée cindiquer la voie d'exposition s'il est H373 : Risque présumé d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>

	▶ Pour certaines mentions de danger pour la santé des lettres sont a	ajou	tées au code à 3 chiffres :
•	H350i : Peut provoquer le cancer par inhalation	•	H360Df: Peut nuire au foetus. Susceptible de nuire à la fertilité.
•	H360F : Peut nuire à la fertilité		
•	H360D : Peut nuire au foetus		5 mentions de danger pour l'environnement
•	H361f : Susceptible de nuire à la fertilité	•	H400 : Très toxique pour les organismes aquatiques
•	H361d : Susceptible de nuire au foetus	•	H410 : Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
•	H360FD : Peut nuire à la fertilité. Peut nuire au foetus	•	H411 : Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
•	H361fd : Susceptible de nuire à la fertilité. Susceptible de nuire au foetus	•	H412 : Nocif pour les organismes aquatiques, entraîne des effets néfastes à long terme
•	H360Fd : Peut nuire à la fertilité. Susceptible de nuire au foetus	•	H413 : Peut être nocif à long terme pour les organismes aquatiques

Symboles de danger

Réf: NO3700187 / 1040141-02

- SHG01: Explosif (ce produit peut exploser au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, d'un choc ou de frottements).
- SGH02: Inflammable (Le produit peut s'enflammer au contact d'une flamme, d'une étincele, d'électricité statique, sous l'effet de la chaleur, de frottements, au contact de l'air ou au contact de l'eau en dégageant des gaz inflammables).
- SGH03: Comburant (peut provoquer ou aggraver un incendie peut provoquer une explosion en présence de produit inflammable).
- SGH04: Gaz sous pression (peut exploser sous l'effet de la chaleur (gaz comprimé, liquéfié et dissous) peut causer des brûlures ou blessures lées au froid (gaz liquéfiés réfriaérés).
- SGH05: Corrosif (produit qui ronge et peut attaquer ou détruire des métaux peut provoquer des brûlures de la peau et des lésions aux yeux en cas de contact ou de projection).
- SGH06: Toxique ou mortel (le produit peut tuer rapidement empoisonne rapidement même à faible dose).
- SGH07 : Dangereux pour la santé (peut empoisonner à forte dose peut irriter la peau, les yeux, les voies respiratoires peut provoquer des allergies cutanées peut provoquer somnolence ou vertige – produit qui détruit la couche d'ozone).
- SGH08 : Nuit gravement pour la santé (peut provoquer le cancer, modifier l'ADN, nuire à la fertilité ou au fœtus, altérer le fonctionnement de certains organes peut être mortele en cas d'ingestion et de pénétration dans les voies respiratoires – peut provoquer des difficultés respiratoires ou des allergies respiratoires).
- SGH09: Dangereux pour l'environnement (produit poluant provoque des effets néfastes à court et/ou long terme sur les organismes des milieux aquatiques).

JGRO / SEP

Annexes

25/08/2023

De Classification en termes de cancérogénicité

UE	US-EPA	CIRC		
C1 (H350 ou H350i) : cancérogène avéré ou présumé l'être :				
C1A: Substance dont le potentiel cancérogène pour l'être humain est avéré	A: Preuves suffisantes chez l'homme	1 : Agent ou mélange cancérigène pour l'homme		
C1B : Substance dont le potentiel cancérogène pour l'être humain est supposé				
	B1 : Preuves limitées chez l'homme			
C2 : Substance suspectée d'être cancérogène pour l'homme	B2 : Preuves non adéquates chez l'homme et preuves suffisantes chez l'animal	2A : Agent ou mélange probablement cancérigène pour l'homme		
Carc.3 : Substance préoccupante pour l'homme en raison d'effets cancérogènes possibles (R40)	C : Preuves inadéquates chez l'homme et preuves limitées chez l'animal	2B : Agent ou mélange peut-être cancérigène pour l'homme		
	D : Preuves insuffisantes chez l'homme et l'animal	3 : Agent ou mélange inclassables quant-à sa cancérogénicité pour l'homme		
	E : Indications d'absence de cancérogénicité chez l'homme et chez l'animal	4 : Agent ou mélange probablement non cancérigène chez l'homme		

De Classification en termes de mutagénicité

M1 (H340): Substance dont la capacité d'induire des mutations héréditaires est avérée ou qui sont à considérer comme induisant des mutations héréditaires dans les cellules germinales des êtres humains. Substance dont la capacité d'induire des mutations héréditaires dans les cellules germinales des êtres humains est avérée. M1A: Classification fondée sur des résultats positifs d'études épidémiologiques humaines. Substance considérée comme induisant des mutations héréditaires dans les cellules germinales des êtres humains.

M1B: Classification fondée sur des essais in vivo de mutagénicité sur des cellules germinales et somatiques et qui ont donné un ou des résultats positifs et sur des essais qui ont montré que la substance a des effets mutagènes sur les cellules germinales humaines, sans que la transmission de ces mutations à la descendance n'ait été établie.

M2 (H341) : Substance préoccupantes du fait qu'elle pourrait induire des mutations héréditaires dans les cellules germinales des êtres humains.

▶ Classification en termes d'effets reprotoxiques

	UE				
R1 (H360 ou H360F ou H360D ou H360FD ou H360Fd ou H360fD) : Reprotoxique avéré ou présumé	R1A: Substance dont la toxicité pour la reproduction humaine est avérée. La classification d'une substance dans cette catégorie s'appuie largement sur des études humaines.				
	R1B : Substance présumée toxique pour la reproduction humaine. La classification d'une substance dans cette catégorie s'appuie largement sur des données provenant d'études animales.				
R2 (H361 ou H361f ou H361d ou H361fd) : Substance suspectée d'être toxique pour la reproduction humaine. Les substances sont					

catégorie 1 mais qui font apparaître un effet indésirable sur la fonction sexuelle et la fertilité ou sur le développement.

classées dans cette catégorie lorsque les résultats des études ne sont pas suffisamment probants pour justifier une classification dans la

Annexe 2. Méthodes analytiques, LQ et flaconnage

Cette annexe contient 3 pages.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Annexes

AGROLAB Flaconnage

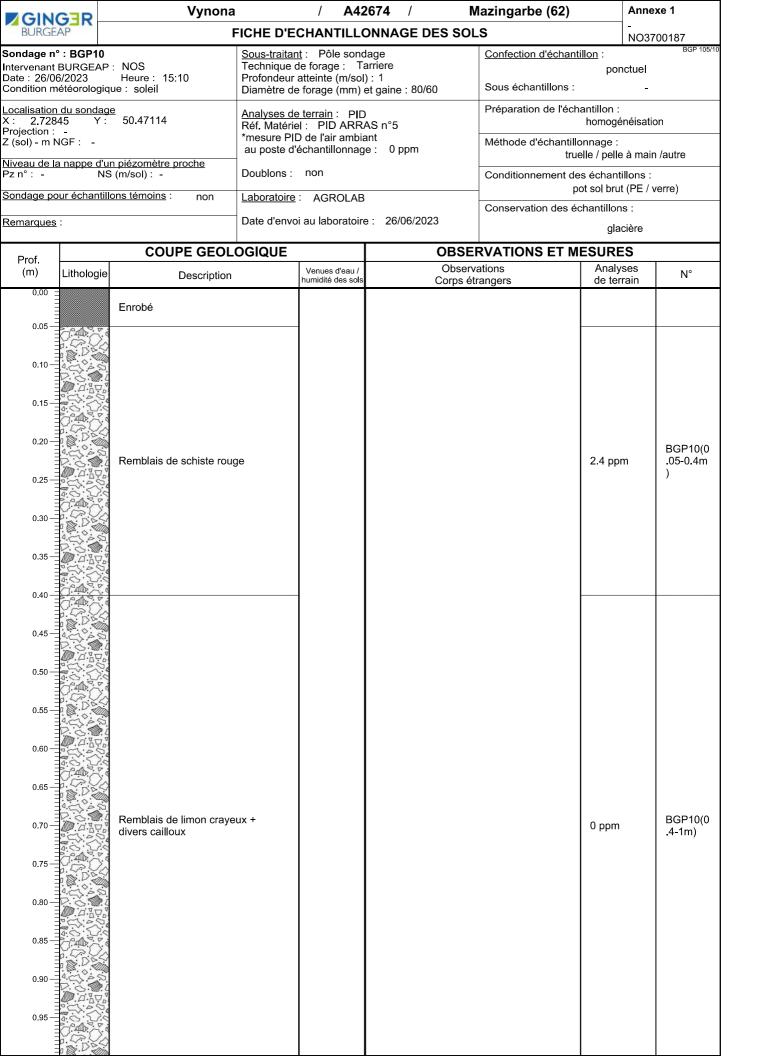
	Aromatische en	A. Janes	AL-MAN A			
Nom Hollandais	chloorhoudende oplosmiddelen	Waterdampvluchtige fenolen	Cyanide	Methaan/ethaan/etheen CKW- afbraak	pH/Ec	Blanco
Equivalence Française	BTEX, COHV	Indice phénois	Cyanures	Méthane/éthane/éthylène biodégradation, paquet étendu	pH/Conductivité	Blanc
Contenance	100 mL	100 mL	100 mL	100 mL	100 mL	500 mL
Conservateur	HNO3	H3PO4/CuSO4	NaOH	HNO3	sans	sans
	HCT méthode interne - 100 mL BTEX et COHV - 100 mL	Indice phénols - 40 mL	Cyanures libres - 40 mL Cyanures totaux - 40 mL	Méthane/éthane/éthylène biodégradation, paquet étendu - 100 mL	Chrome VI - 100 mL Conductivité - 50 mL	Alcools et solvants polaires - 100 mL AOX - 500 mL
Analyses	Chlorobenzènes volatils - 80 mL GC-MS volatils - 100 mL Hydrocarbures volatils C6-C10 - 80 mL Solvants bromés - 80 mL				Fluorures - 20 mL Métaux ourds avec filtration au labo - 100 mL Nitrate - 40 mL Nitrite - 40 mL	Biphényl et biphényléthers - x 2 bouteilles Bromures - 60 mL Chlorobenzènes non volatils - x 2 bouteilles Chlorures - 40 mL
Quantité					pH - 40 mL Sulfate - 60 mL	Couleur - 100 mL DBO5 - x 2 bouteilles
						Dioxines - x 2 bouteilles GC-MS non volatils - x 2 bouteilles HAP Interne - 100 mL HAP ISO - x 2 bouteilles Hulles et graisses - x 2 bouteilles
Nom Hollandais	stikstof ammonium /stikstof Kjeldahl/CZV	Zware metalen	ТРН	cihoor - en alkylfenolen		Matières inhibitrices - x 2 bouteilles
Equivalence	DCO /azote ammoniacal/azote	Métaux lourds	EOX HCT ISO HCT 10 µg/L	Phénois et chlorophénois		MES - 500 mL
Française Contenance	Kjeldahl/phosphore total 250 mL	100 mL	500 mL	500 mL		MES - 500 IIIE
Conservateur	H2SO4	HNO3	HNO3	H3PO4		Organoétains - 500 mL
Code étiquette	41-8-250 / LV2490	2-39-8 / LV2265	945-5 / LV2634	23-55-5 / LV2600		
out tuquette	Ammonium NH4+ - 50 mL	Métaux lourds - 100 mL	EOX - x 2 bouteilles	Phénols et chlorophénols - x 2 bouteilles		Orthophosphates - 60 mL PCB - 100 mL
Analyses	Azote Kjeldhal - 100 mL COT - 200 mL CIT - 200 mL DCO - 80 mL		HCT ISO - x 2 bouteilles HCT seuil 10 µg/l - x 2 bouteilles TPH-MADEP - x 2 bouteilles			Pesticides organo-N et P - x 2 bouteilles Pesticides organochlorés - 100 mL Sulfures - 400 mL
	Phosphore total - 60 MI					

Matrice sols

D ésignation	Catégorie d'article	Méthode ▼	LOUII EFÇ	Unités
Cyanures libres	Autres/Sols & Déchets/Analyses	NEN 6655 eq. ISO/DIS 17380	1	mg CN/kg
Cyanures totaux	Autres/Sols & Déchets/Analyses	NEN 6655 eq. ISO/DIS 17380 - DIN ISO 11262	1	mg CN/kg
Indice phénois	Autres/Sols & Déchets/Analyses	EN ISO 14402	0,1	mg/kg
Hydrocarbures totaux par CPG, fraction C10-C40 ; PROFIL ORGANIQUE QUALITATIF (C10 - C40)	Hydrocarbures & COHV/Sols & Déchets/Analyses	CPG/FID Méthode interne, nC10 à nC40 (>C10-C12, >C12-C16, >C16-C20, >C20- C24, >C24-C28, >C28-C32, >C32-C36, >C36-C40) chromatogramme fourni	20	mg/kg
Hydrocarbures totaux par CPG, fraction C10-C40; PROFIL ORGANIQUE QUALITATIF (C10 - C40)	Hydrocarbures & COHV/Sols & Déchets/Analyses	CPG/FID Méthode ISO 1673, nC10 à nC40 (>C10-C12, >C12-C16, >C16-C20, >C20 (C24, >C24-C28, >C28-C32, >C32-C36, >C36-C40), chromatogramme fourni	20	mg/kg
Hydrocarbures totaux volatils (C6 - C10) découpage fractions C6-C8 et > C8-C10	Hydrocarbures & COHV/Sols & Déchets/Analyses	HS/CPG/MS méthode interne basé sur ISO 22155 (Head-Space) : Somme des C6 - C10 et découpage fractions C6-C8 et >C8-C10	1	mg/kg
Solvants chlorés (13 composés, chlorure de vinyle inclus)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space): 1,1,1-Trichloroéthane, 1,1,2- Trichloroéthane, 1,1-Dichloroéthane, 1,1-Dichloroéthylène, 1,2 Cis-Dichloroéthylène, 1,2 Trans-Dichloroéthylène, 1,2-Dichloroéthane, Chloroforme, Chlorure de vinyle, Dichlorométhane, Tétrachloréthylène, Tetrachlorure de Carbone, Trichloréthylène	0,02 à 0,1	mg/kg
Solvants chlorés (19 composés MACAOH)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space): 1,1,1-Trichloroéthane, 1,1,2- Trichloroéthane, 1,1-Dichloroéthane, 1,1-Dichloroéthylène, 1,2 Cis-Dichloroéthylène, 1,2 Trans-Dichloroéthylène, 1,2-Dichloroéthane, Chloroforme, Chlorure de vinyle, Dichlorométhane, Tétrachloréthylène, Tetrachlorure de Carbone, Trichloréthylène + extension MACAOH: Chlorométhane, Chloroéthane, Pentachloroéthane, Hexachloroéthane, 1,1,1,2-Tétrachloroéthane, 1,1,2,2-Tétrachloroéthane	0,02 à 0,5	mg/kg
BTEX (5 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space) : Benzène, Toluène, Ethyl benzène, m+p Xylène, o-Xylène	0,05-0,1	mg/kg
BTEX bilan étendu (13 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (Head-Space): Benzène, Toluène, Ethyl benzène, m+p Xylène, o-Xylène, Naphtalène, Styrène, a-Méthylstyrène, Propylbenzène, iso-Propylbenzène, iso-Propylbenzène, 1,2,3-Triméthylbenzène, 1,2,4-Triméthylbenzène, 1,3,5-Triméthylbenzène	0,05-0,1	mg/kg
Chlorobenzènes volatils (7 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	par HS /GC/MS , basé sur ISO 22155 : Chlorobenzènes volatils :monochlorobenzène ; 1,2-dichlorobenzène ; 1,3-dichlorobenzène ; 1,2,3-trichlorobenzène ; 1,2,4-trichlorobenzène ; 1,2,5-trichlorobenzène	0,1	mg/kg MS
Chlorobenzènes non-volatils (4 composés)	Hydrocarbures & COHV/Sols & Déchets/Analyses	méthode interne, analyse selon ISO 10382 : 1,2,3,4-tétrachlorobenzène ; 1,2,3,5/1,2,4,5-tétrachlorobenzène ; pentachlorobenzène ; hexachlorobenzène	1	μg/kg MS
COV bromés	Hydrocarbures & COHV/Sols & Déchets/Analyses	Méthode interne basé sur ISO 22155 (HS) : Bromochlorométhane, Dibromochlorométhane, Dichlorobromométhane, Dibromoethane, Tribromométhane (Bromoforme)	0,1	mg/kg
Hydrocarbures par TPH (Liste réduite)	Hydrocarbures & COHV/Sols & Déchets/Analyses	8 fractions aliphatiques + 8 fractions aromatiques (Cf Annexe 1). Analyse par GC/MS méthode interne	-	voir Annexe
HAP (16 - liste EPA)	Hydrocarbures & COHV/Sols & Déchets/Analyses	méthode interne: Naphtalène, Acénaphtène, Acénaphtylène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,h.i)pérylène, Benzo(k) fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène, Indéno (1,2,3) pyrène, Phénanthrène, Pyrène	0,05	mg/kg
HAP (16 - liste EPA)	Hydrocarbures & COHV/Sols & Déchets/Analyses	ISO 13877: Naphtalène, Acénaphtène, Acénaphtylène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,h,i)pérylène, Benzo(k) fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène, Indéno (1,2,3) pyrène, Phénanthrène, Pyrène	0,05	mg/kg
PCB congénères réglementaires (7 composés)	PCB Dioxines et furanes/Sols & Déchets/Analyses	EN ISO 10382 par GC/ECD (ou méthode interne par GC/MS suivant capacité laboratoire) : PCB 28, 52, 101, 118, 138, 153, 180	1	μg/kg
PCB de type dioxine (12 congénères)	PCB Dioxines et furanes/Sols & Déchets/Analyses	Méthode dériveée de la méthode EPA 1613, par CPG SM-HR (PCB n° 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189)	1 à 10	ng//kg
Dioxines et furanes (17 congénères)	PCB Dioxines et furanes/Sols & Déchets/Analyses	selon la NF EN 1948 , GC-SM haute résolution -	1	ng//kg
Pesticides organochlorés (21 composés)	Pesticides/Sols & Déchets/Analyses	EN ISO 10382 par GC/ECD (ou méthode interne par GC/MS suivant capacité laboratoire): HCH alpha, HCH béta, HCB, Lindane, HCH delta, Heptachlore, cis-Heptachlore époxyde, Endosulfan alpha, Aldrine, Dieldrine, Endrine, Isodrine, Telodrine, Endosulfan alpha, o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT, p,p'-DDT, trans-chlordane	. 1	µg/kg
Pesticides Organo-Azotés	Pesticides/Sols & Déchets/Analyses	Organo-N-pesticides par CPG/SM: Atrazine, Cyanazine, Desméthrine, Prométhrine, Propazine, Simazine, Terbutrine, Terbutylazine	0,1 à 0,2	mg/kg
Pesticides Organo-Phosphorés	Pesticides/Sols & Déchets/Analyses	Organo-N-pesticides par CPG/SM: Azinphos-éthyle, Azinphos-méthyle, Bromophos- éthyle, Bromophos-méthyle, Chloropyrophos-éthyle, Coumaphos, diazinon, Diméthoate, Disulphoton, Ethion, Fénitrothion, Fenthion, Malathion, Méthidathon, Mévinphos, Parathion-méthyle, Parathion-éthyle, Pyrazophos, Triazophos, Trifluralin.	0,1 à 0,5	mg/kg
Arsenic	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg As/kg
Baryum	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg Ba/kg
Cadmium	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,1	mg Cd/kg
Chrome total	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,2	mg Cr/kg
Chrome hexavalent	Métaux/Sols & Déchets/Analyses	DIN 38405-D24	1	mg Cr∀ l /kg
Cobalt	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885 (rajouter une minéralisation)	0,5	mg Co/kg
Cuivre	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,2	mg Cu/kg
Mercure	Métaux/Sols & Déchets/Analyses	ISO 16772	0,05	mg Hg/kg
Nickel	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Ni/kg
Plomb	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Pb/kg
Sélénium	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885 (rajouter une minéralisation)	1	mg Se/kg
Zinc	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	1	mg Zn/kg
Antimoine	Métaux/Sols & Déchets/Analyses	ICP-AES NF EN ISO 11 885	0,5	mg Sb/kg

Matrice air

Désignation	Catégorie d'article	Méthode ▼	LOUII EFÇ	Unités
Composés aromatiques BTEXN (6 composés) sur tube charbon actif	Hydrocarbures & COHV/Air Ambiant - Gaz du sol/Analyses	Méthode interne - dosage en GC-MS : benzène, toluène, éthyl-benzène, m+p-xylène, o-xylène, Naphtalène sur tube en charbon actif (désorption incluse) (2 zones)	0,1-0,5	μg/tube (100 mg)
Composés aromatiques , paquet étendu (13 composés) sur tube charbon actif	Hydrocarbures & COHV/Air Ambiant - Gaz du sol/Analyses	Méthode interne - dosage en GC-MS: Benzène, Toluène, Ethyl benzène, m+p Xylène, o-Xylène, Naphtalène, Styrène, a-Méthylstyrène, Propylbenzène, iso- Propylbenzène, 1,2,3-Triméthylbenzène, 1,2,4-Triméthylbenzène, 1,3,5- Triméthylbenzène - sur tube en charbon actif)	0,1-5	μg/tube (100 mg)
Hydrocarbures volatils (C6-C12) - sur tube charbon actif résultat : Somme + C6-C8, >C8-C10 et >C10-C12	Hydrocarbures & COHV/Air Ambiant - Gaz du sol/Analyses	Méthode interne - dosage en GC-MS : C6-C8, >C8-C10, >C10-C12 + somme des hydrocarbures volatils C6 - C12 (désorption incluse) (2 zones)	10	μg/tube (100 mg)
Hydrocarbures par TPH (Liste réduite C5 - C12) (US-EPA Criteria Working Group - version adaptée) - sur tube charbon actif	Hydrocarbures & COHV/Air Ambiant - Gaz du sol/Analyses	Méthode interne - dosage en GC-MS : 4 fractions aliphatiques, 4 fractions aromatiques (Cf Annexe 1) (désorption incluse) (2 zones)	2 /fraction	μg/tube (100 mg)
Chlorobenzènes volatils (7 composés) sur tube charbon actif	Hydrocarbures & COHV/Air Ambiant - Gaz du sol/Analyses	Méthode interne - dosage en GC-MS: Monochlorobenzène, 1,2-Dichlorobenzène, 1,3-Dichlorobenzène, 1,4-Dichlorobenzène, 1,2,3-Trichlorobenzène, 1,2,4-Trichlorobenzène, 1,2,5-Trichlorobenzène - sur tube en charbon actif (dés	0,05	μg/tube (100 mg)
Alcools (9 composés - hors méthanol) sur tube CA	Hydrocarbures & COHV/Air Ambiant - Gaz du sol/Analyses	Analyse -méthode interne par CPG/SM: n-Butanol, iso-Butanol, sec-Butanol, tert- Butanol, Ethanol, iso-Propanol, n-pentanol, Cyclohexanol, 4-Méthyl-2-Pentanol (désorption incluse) (sur 2 zones)	5	μg/tube (100 mg)
HAP (16 EPA)	Hydrocarbures & COHV/Air Ambiant - Gaz du sol/Analyses	Dosage par GC/MS - Méthode interne : Naphtalène, Acénaphtène, Acénaphtène, Anthracène, Benzo(a)anthracène, Benzo(a)pyrène, Benzo(b) fluoranthène, Benzo(g,n,i)pérylène, Benzo(k) fluoranthène, Chrysène, Dibenzo(a,h)anthracène, Fluoranthène, Fluorène, Indéno (1,2,3) pyrène, Phénanthrène, Pyrène (désorption incluse) (sur 2 zones)	0,1	μg/tube
Phénds et Crésols	Autres/Air Ambiant - Gaz du sol/Analyses	Dosage par GC/MS - Méthode interne : Phénol, o-crésol, m-crésol, p-crésol, 2,3- diméthylphénol; 2,4-diméthylphénol; 2,5-diméthylphénol; 2,6-diméthylphénol; 3,4- diméthylphénol; 3,5-diméthylphénol/p-éthylphénol, o-éthylphénol, m-éthylphénol (désorption incluse) (sur 2 zones)	0,1	μg/tube
Hydrocarbures par TPH (Liste réduite C5 - C16) (US-EPA Criteria Working Group - version adaptée) - sur tube charbon actif	Hydrocarbures & COHV/Air Ambiant - Gaz du sol/Analyses	Méthode interne - dosage en GC-MS : 4 fractions aliphatiques, 4 fractions aromatiques (Cf Annexe 1) (désorption incluse) (2 zones)	2 /fraction	μg/tube (100 mg)


Réf : NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Annexes

Annexe 3. Fiches d'échantillonnage des sols

Cette annexe contient 19 pages.

Réf: NO3700187 / 1040141-02 JGRO / SEP 25/08/2023 Annexes

